[1] Zhao Xiaofei, Chen Guoxing. Looking at industry hot spots from the "Government Work Report" [J]. China Petroleum and Chemical Industry, 2021(3): 14-23.
[2] Chi Xiaoming, Xiao Anshan, Zhu Liang, et al. Research progress of infrared imaging detection technology for gas leakage in petrochemical enterprises [J]. Safety, Health & Environment, 2021, 21(2): 1-5.
[3] Vollmer M, Möllmann K P. Infrared Thermal Imaging: Fundamentals, Research and Applications [M]. New Jersey: John Wiley & Sons, 2017.
[4] Tan Yuting, Li Jiakun, Jin Weiqi, et al. Model analysis of the sensitivity of single-point sensor and IRFPA detectors used in gas leakage detection [J]. Infrared and Laser Engineering, 2014, 43(8): 2489-2495. (in Chinese)
[5] Li Jiakun, Jin Weiqi, Wang Xia, et al. Review of gas leak infrared detection technology [J]. Infrared Technology, 2014, 36(7): 513-520.
[6] Williams D J, Wadsworth W, Salvaggio C, et al. A hybrid thermal video and FTIR spectrometer system for rapidly locating and characterizing gas leaks [C]//Proc of SPIE, 2006, 6299: 62990O.
[7] Sandsten J, Edner H, Svanberg S. Gas imaging by infrared gas-correlation spectrometry [J]. Optics Letters, 1996, 21(23): 1945-1947. doi:  10.1364/OL.21.001945
[8] Sandsten J, Weibring P, Edner H, et al. Real-time gas-correlation imaging employing thermal background radiation [J]. Optics Express, 2000, 6(4): 92-103. doi:  10.1364/OE.6.000092
[9] Tang Jing, Luo Xiuli, Liu Shaohua, et al. Infrared imaging detection of oil and natural gas leakage [J]. Laser & Infrared, 2016, 46(1): 62-66. (in Chinese)
[10] Feng Tao, Jin Weiqi, Si Junjie. Uncooled infrared FPA-A review and forecast [J]. Infrared Technology, 2015, 37(3): 177-184. (in Chinese)
[11] Flanigan D F. Limits of passive remote detection of hazardous vapors by computer simulation[C]//Proc of SPIE, 1996, 2763: 117-127.
[12] Zhang Xu. Research on theory and technology of passive infrared imaging detection for oil and natural gas leakage[D]. Beijing: Beijing Institute of Technology, 2020. (in Chinese)
[13] Babikov Y L, Gordon I E, Mikhailenko S N, et al. HITRAN on the Web–A new tool for HITRAN spectroscopic data manipulation [C]//Proc of the 12 th International HITRAN Conference, 2012: 29-31.
[14] Oelrich B D, Crastes A, Underwood C I, et al. Low-cost mid-wave IR microsatellite imager concept based on uncooled technology [C]//Proc of SPIE, 2004, 5570: 209-217.
[15] PICO640 E-041 [EB/OL]. (2011-12-12) [2021-12-01]. https://www.ulis-ir.com/.
[16] Crastes A, Touvignon A, Bethoux-Garidel S, et al. Uncooled infrared detector designed for gas detection and high temperature measurements [C]//AMA Conferences 2013, 2013: 20-23.
[17] Li C, Skidmore G D, Howard C, et al. Recent development of ultra small pixel uncooled focal plane arrays at DRS [C]//Proc of SPIE, 2007, 6542: 65421Y.
[18] Li C, Skidmore G, Howard C, et al. Advancement in 17-micron pixel pitch uncooled focal plane arrays [C]//Proc of SPIE, 2009, 7298: 72980S.
[19] Li C, Han C J, Skidmore G D, et al. DRS uncooled VOx infrared detector development and production status [C]//Proc of SPIE, 2010, 7660: 76600V.
[20] VOx Imager BB (Broad Band)-Broadband uncooled IR video core [EB/OL]. (2019-01-10) [2021-12-01]. https://www.scd.co.il/products/vox-imager/.
[21] Mizrahi U, Schapiro F, Bykov L, et al. Advanced µ-Bolometer detectors for high-end applications [C]//Proc of SPIE, 2012, 8353: 83531H.
[22] Klipstein P, Mizrahi U, Fraenkel A, et al. Status of cooled and uncooled infrared detectors at SCD, Israel [J]. Defence Science Journal, 2013, 63(6): 555-570. doi:  10.14429/dsj.63.5755
[23] Fisette B, Tremblay M, Oulachgar H, et al. Novel vacuum packaged 384×288 broadband bolometer FPA with enhanced absorption in the 3-14 µm wavelength range [C]//Proc of SPIE, 2017, 10177: 101771R.
[24] Généreux F, Tremblay B, Gay D, et al. Small uncooled bolometers with a broad spectral response [C]//Proc of SPIE, 2018, 10624: 106241D.
[25] Jin Weiqi, Li Jiakun, Wang Xia, et al. Gas leak imaging detection system based on wide-band uncooled focal plane detector, China: ZL201210273638.3 [P]. 2014-10-24.
[26] Jin W, Li J, Dun X, et al. Wide-band gas leak imaging detection system using UFPA [C]//Proc of SPIE, 2014, 9301: 930102.
[27] Li Jiakun, Jin Weiqi, Zhang Xu, et al. Gas leak infrared image dynamic compression and enhancement method [J]. Acta Optica Sinica, 2017, 37(1): 0111003. (in Chinese)
[28] Li Jiakun, Dun Xiong, Jin Minglei, et al. Design of wide-band gas leak infrared imaging detection system [J]. Infrared and Laser Engineering, 2014, 43(6): 1966-1971. (in Chinese)
[29] Preciado M A, Carles G, Harvey A. Multi-aperture multispectral imaging at LWIR for detection and classification [C]//Computational Optical Sensing and Imaging. Optical Society of America, 2016: JT3A. 36.
[30] Preciado M A, Carles G, Harvey A R. Snapshot multispectral imaging in long-wave infrared based on a multi-aperture system of low-cost detectors [C]//Imaging Systems and Applications. Optical Society of America, 2017: ITh3E. 5.
[31] Więcek P. A method for automatic gas detection using wide-band 3-14 µm bolometer camera [C]//QIRT 2018 Proceedings, 2018: 115-121.
[32] Więcek P, Więcek B. Performance analysis of dual-band microbolometer camera for industrial gases detection [J]. Measurement Automation Monitoring, 2018, 4(64): 90-94.
[33] TELEDYNE FLIR. 气体泄漏检测热像仪 [EB/OL]. (2019-03-05) [2021-12-01]. https://www.FLIR.cn/browse/industrial/gas-detection-cameras/.
[34] Noack J C, Guern Y, Pelous G. Method and apparatus for remote optical detection of a gas present in an observed volume, US: 5306913 [P]. 1994-04-26.
[35] Pelous G, Grenier L, Adam P. Passive standoff detection of gas clouds in open field by IR imagery [C]//Proc of SPIE, 1999, 3533: 86-92.
[36] Bernascolle P, Pelous G, Grenier L. Remote detection of natural gas clouds in open fields by IR imager [C]//Proc of SPIE, 1999, 3700: 409-416.
[37] Naranjo E, Baliga S, Bernascolle P. IR gas imaging in an industrial setting [C]//Proc of SPIE, 2010, 7661: 76610 K.
[38] Vallières A, Villemaire A, Chamberland M, et al. Algorithms for chemical detection, identification and quantification for thermal hyperspectral imagers [C]//Proc of SPIE, 2005, 5995: 59950 G.
[39] Farley V, Vallières A, Chamberland M, et al. Performance of the FIRST: A long-wave infrared hyperspectral imaging sensor [C]//Proc of SPIE, 2006, 6398: 63980T.
[40] Puckrin E, Turcotte C S, Lahaie P, et al. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors [C]//Proc of SPIE, 2009, 7482: 74820S.
[41] Puckrin E, Turcotte C S, Lahaie P, et al. Airborne infrared-hyperspectral mapping for detection of gaseous and solid targets [C]//Proc of SPIE, 2010, 7665: 766516.
[42] Gagnon M A, Gagnon J P, Tremblay P, et al. Standoff midwave infrared hyperspectral imaging of ship plumes [C]//2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. IEEE, 2015: 1-4.
[43] Agassi E, Hirsch E, Chamberland M, et al. Detection of gaseous plumes in airborne hyperspectral imagery [C]//Proc of SPIE, 2016, 9824: 98240U.
[44] TELOPS. Products and Services Available at Telops [EB/OL]. (2019-01-05) [2021-12-01]. https://www.telops.com/zh-hans/products/.
[45] Sakagami T, Anzai H, Kubo S. Development of a gas leak detection method based on infrared spectrum imaging utilizing microbolometer camera [C]//Proc of SPIE, 2011, 8013: 80130C.
[46] Kester R T, Walker C, Hagen N. A real-time gas cloud imaging camera for fugitive emission detection and monitoring [C]//Applied Industrial Optics: Spectroscopy, Imaging and Metrology. Optical Society of America, 2012: AW1B. 1.
[47] Hagen N, Kester R T, Morlier C G, et al. Video-rate spectral imaging of gas leaks in the longwave infrared [C]//Proc of SPIE, 2013, 8710: 871005.
[48] Hagen N, Kester R T, Walker C. Real-time quantitative hydrocarbon gas imaging with the gas cloud imager (GCI) [C]//Proc of SPIE, 2012, 8358: 83581J.
[49] Gao L, Kester R T, Hagen N, et al. Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy [J]. Optics Express, 2010, 18(14): 14330-14344. doi:  10.1364/OE.18.014330
[50] Hagen N, Kester R T, Gao L, et al. Snapshot advantage: A review of the light collection improvement for parallel high-dimensional measurement systems [J]. Optical Engineering, 2012, 51(11): 111702.
[51] Weng Jing, Yuan Pan, Wang Minghe, et al. Thermal imaging detection method of leak gas cloud based on support vector machine [J]. Acta Optica Sinica, 2022, 42(9): 0911002. (in Chinese)