[1] Wang Chi, Gao Jun, Yao Tingting, et al. Acquiring reflective polarization from arbitrary multi-layer surface based on Monte Carlo simulation [J]. Optics Express, 2016, 24(9): 9397-9411. doi:  10.1364/OE.24.009397
[2] 郭忠义, 汪信洋, 李德奎, 等. 偏振信息传输理论及应用进展(特约)[J]. 红外与激光工程, 2020, 49(6): 20201013.

Guo Zhongyi, Wang Xinyang, Li Dekui, et al. Advances on theory and application of polarization information propagation (<italic>Invited</italic>) [J]. Infrared and Laser Engineering, 2020, 49(6): 20201013. (in Chinese)
[3]

Shen Fei, Zhang Bianmei, Guo Kai, et al. The depolarization performances of the polarized light in different scattering media systems [J]. IEEE Photonics Journal, 2018, 10(2): 3900212.
[4]

Hu Tianwei, Shen Fei, Wang Kaipeng, et al. Broad-band transmission characteristics of polarizations in foggy environments [J]. Atomosphere, 2019, 10(6): 342. doi:  10.3390/atmos10060342
[5]

Xu Qiang, Guo Zhongyi, Tao Qiangqiang, et al. A novel method of retrieving the polarization qubits after being transmitted in turbid media [J]. Journal of Optics, 2015, 17(3): 035606. doi:  10.1088/2040-8978/17/3/035606
[6]

Xu Qiang, Guo Zhongyi, Tao Qiangqiang, et al. Transmitting characteristics of the polarization information under seawater [J]. Applied Optics, 2015, 54(21): 6584-6588. doi:  10.1364/AO.54.006584
[7]

Xu Qiang, Guo Zhongyi, Tao Qiangqiang, et al. Multi-spectral characteristics of polarization retrieve in various atmospheric conditions [J]. Optics Communications, 2015, 339: 167-170. doi:  10.1016/j.optcom.2014.11.065
[8] 程峰. 基于偏振和激光雷达遥感的长三角地区气溶胶信息提取及其时空变化研究[J]. 测绘学报, 2019(6), 48(6): 803.

Cheng Feng. Study on the extraction of aerosol information and its spatial-temporal changes based on PARSOL and CALIPSOL remote sensing data in the Yangtze River Delta [J]. Acta Geodactica et Cartographica Sinica, 2019(6), 48(6): 803. (in Chinese)
[9]

Talmage D A, Curran P J. Remote sensing using partially polarized light [J]. International Journal of Remote Sensing, 1986, 7(1): 47-64. doi:  10.1080/01431168608954660
[10]

Herman M, Deuzé J L, Devaux C, et al. Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 17039-17049. doi:  10.1029/96JD02109
[11]

Chang P C Y, Flitton J C, Hopcraft K I, et al. Improving visibility depth in passive underwater imaging by use of polarization [J]. Applied Optics, 2003, 42(15): 2794-2803. doi:  10.1364/AO.42.002794
[12] 赵永强, 戴慧敏, 申凌皓, 等. 水下偏振清晰成像方法综述[J]. 红外与激光工程, 2020, 49(6): 20190574.

Zhao Yongqiang, Dai Huimin, Shen Linghao, et al. Review of underwater polarization clear imaging methods [J]. Infrared and Laser Engineering, 2020, 49(6): 20190574. (in Chinese)
[13]

Dubreuil M, Delrot P, Leonard I, et al. Exploring underwater target detection by imaging polarimetry and correlation techniques [J]. Applied Optics, 2013, 52(5): 997-1005. doi:  10.1364/AO.52.000997
[14]

De Boer J F, Milner T E, Van Gemert M J C, et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography [J]. Optics Letters, 1997, 22(12): 934-936. doi:  10.1364/OL.22.000934
[15]

Sakhnovskiy M Y, Syvokorovskaya A V, Martseniak V, et al. System of biological crystals fibrillar networks polarization-correlation mapping[C]//Applications of Digital Image Processing XLI. International Society for Optics and Photonics, 2018, 10752: 107522G.
[16]

Gaiarin S, Perego A M, da Silva E P, et al. Dual-polarization nonlinear Fourier transform-based optical communication system [J]. Optica, 2018, 5(3): 263-270. doi:  10.1364/OPTICA.5.000263
[17]

Tao Qiangqiang, Guo Zhongyi, Xu Qiang, et al. Polarization retrieve for scattering light in the 10 km multilayer atmosphere [J]. Journal of Optics, 2015, 17(8): 085701. doi:  10.1088/2040-8978/17/8/085701
[18] 许雄,陶强强,沈飞,等. 基于偏振信息恢复的光通信[J]. 红外与激光工程, 2016, 45(9): 0922002. doi:  10.3788/IRLA201645.0922002

Xu Xiong, Tao Qiangqiang, Shen Fei, et al. Retrieving the polarization information for light communication [J]. Infrared and Laser Engineering, 2016, 45(9): 0922002. (in Chinese) doi:  10.3788/IRLA201645.0922002
[19]

Chamberlain N E, Walton E K, Garber F D. Radar target identification of aircraft using polarization-diverse features [J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(1): 58-67. doi:  10.1109/7.68148
[20]

Tao Qiangqiang, Sun Yongxuan, Shen Fei, et al. Active imaging with the aids of polarization retrieve in turbid media system [J]. Optics Communications, 2016, 359: 405-410. doi:  10.1016/j.optcom.2015.09.109
[21] 王峰, 贾镕, 刘晓, 等. 汗潜指纹紫外偏振反射特性研究(特约)[J]. 红外与激光工程, 2020, 49(6): 20201011. doi:  10.3788/IRLA20201011

Wang Feng, Jia Rong, Liu Xiao, et al. Study on UV polarization reflection characteristics of sweat latent fingerprints (<italic>Invited</italic>) [J]. Infrared and Laser Engineering, 2020, 49(6): 20201011. (in Chinese) doi:  10.3788/IRLA20201011
[22] 熊志航, 廖然, 曾亚光, 等. 利用偏振成像在复杂现场快速识别金属碎屑(特约)[J]. 红外与激光工程, 2020, 49(6): 20201012. doi:  10.3788/IRLA20201012

Xiong Zhihang, Liao Ran, Zeng Yaguang, et al. Rapid identification of metal debris in complicated scenes by using polarization imaging(<italic>Invited</italic>) [J]. Infrared and Laser Engineering, 2020, 49(6): 20201012. (in Chinese) doi:  10.3788/IRLA20201012
[23] 陈伟力, 徐文斌, 王淑华, 等. 基于红外光谱偏振度对比度的涂层材质识别研究[J]. 红外与激光工程, 2020, 49(6): 20190445. doi:  10.3788/IRLA20190445

Chen Weili, Xu Wenbin, Wang Shuhua, et al. Research on coating materials detection and recognition based on infrared spectral polarization degree contrast [J]. Infrared and Laser Engineering, 2020, 49(6): 20190445. (in Chinese) doi:  10.3788/IRLA20190445
[24]

Shen Fei, Wang Kaipeng, Tao Qiangqiang, et al. Polarization imaging performances based on different retrieving Mueller matrixes [J]. Optik, 2018, 153: 50-57. doi:  10.1016/j.ijleo.2017.09.115
[25]

Harnett C K, Craighead H G. Liquid-crystal micropolarizer array for polarization difference imaging [J]. Applied Optics, 2002, 41(7): 1291-1296. doi:  10.1364/AO.41.001291
[26]

Gao Yong, Gao Jun, Fan Zhiguo, et al. Design of multi-spectral target polarization information detection system[J]. MicroComputer & its Applications, 2013, 32(10): 92-94.
[27]

Farlow C A, Chenault D B, Spradley K D, et al. Imaging polarimeter development and applications[C]//Proc of SPIE, 2002, 4481: 118-125.
[28]

Perkins R, Gruev V. Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters [J]. Optics Express, 2010, 18(25): 25815-25824. doi:  10.1364/OE.18.025815
[29]

Pendry J B. Negative refraction makes a perfect lens [J]. Physical Review Letters, 2000, 85(18): 3966. doi:  10.1103/PhysRevLett.85.3966
[30]

Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
[31]

Pors A, Nielsen M G, Valle G D, et al. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles [J]. Optics Letters, 2011, 36(9): 1626-1628. doi:  10.1364/OL.36.001626
[32]

Yu Nanfang, Capasso F. Flat optics with designer metasurfaces [J]. Nature Materials, 2014, 13(2): 139-150. doi:  10.1038/nmat3839
[33]

Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces [J]. Nature Photonics, 2014, 8(12): 889. doi:  10.1038/nphoton.2014.247
[34]

Koenderink A F, Alù A, Polman A. Nanophotonics: Shrinking light-based technology [J]. Science, 2015, 348(6234): 516-521. doi:  10.1126/science.1261243
[35]

Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices [J]. International Journal of Antennas and Propagation, 2015, 2015(16): 204127. doi:  10.1155/2015/204127
[36]

Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: From microwaves to visible [J]. Physics Reports, 2016, 634: 1-72. doi:  10.1016/j.physrep.2016.04.004
[37]

Hsiao H H, Chu Chenghung, Tsai D P. Fundamentals and applications of metasurfaces [J]. Small Methods, 2017, 1(4): 1600064. doi:  10.1002/smtd.201600064
[38]

Ding Fei, Pors A, Bozhevolnyi S I. Gradient metasurfaces: a review of fundamentals and applications [J]. Reports on Progress in Physics, 2017, 81(2): 026401.
[39]

Hum S V, Perruisseau-Carrier J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review [J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 183-198. doi:  10.1109/TAP.2013.2287296
[40]

Zheludev N I, Kivshar Y S. From metamaterials to metadevices [J]. Nature Materials, 2012, 11(11): 917-924. doi:  10.1038/nmat3431
[41]

Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress [J]. Reports on Progress in Physics, 2015, 78(2): 024401. doi:  10.1088/0034-4885/78/2/024401
[42]

Guo Zhongyi, Chen Xianzhong, Zentgraf Thomas. Editorial for the theories and applications of metasurfaces [J]. Journal of Physics D, 2018, 51(15): 150201. doi:  10.1088/1361-6463/aab3b6
[43]

Ni Xingjie, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas [J]. Science, 2012, 335(6067): 427-427. doi:  10.1126/science.1214686
[44]

Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces [J]. Nano Letters, 2012, 12(12): 6223-6229. doi:  10.1021/nl3032668
[45]

Zhou Jian, Wang Jingjing, Guo Kai, et al. High-efficiency terahertz polarization devices based on the double-phase modulating metasurface [J]. Superlattices and Microstructures, 2018, 114: 75-81. doi:  10.1016/j.spmi.2017.12.011
[46]

Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets [J]. Physical Review Letters, 2013, 110(19): 197401. doi:  10.1103/PhysRevLett.110.197401
[47]

Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves [J]. Nature Materials, 2012, 11(5): 426-431. doi:  10.1038/nmat3292
[48]

Lin Jiao, Mueller J B, Wang Qian, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons [J]. Science, 2013, 340(6130): 331-334. doi:  10.1126/science.1233746
[49]

Huang Lingling, Chen Xianzhong, Bai Benfeng, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity [J]. Light: Science & Applications, 2013, 2(3): e70-e70.
[50]

Pors A, Nielsen M G, Bernardin T, et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons [J]. Light: Science & Applications, 2014, 3(8): e197-e197.
[51]

Sun Wujiong, He Qiong, Sun Shulin, et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations [J]. Light: Science & Applications, 2016, 5(1): e16003-e16003.
[52]

Ding Fei, Deshpande R, Bozhevolnyi S I. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence [J]. Light: Science & Applications, 2018, 7(4): 17178-17178.
[53]

Li Xin, Xiao Shiyi, Cai Bengeng, et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry [J]. Optics Letters, 2012, 37(23): 4940-4942. doi:  10.1364/OL.37.004940
[54]

Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces [J]. Nano Letters, 2012, 12(9): 4932-4936. doi:  10.1021/nl302516v
[55]

Ni Xingjie, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses [J]. Light: Science & Applications, 2013, 2(4): e72-e72.
[56]

Yin Zhiping, Zheng Qun, Wang Kuiyuan, et al. Tunable dual-band terahertz lens based on stacked graphene metasurfaces [J]. Optical Communications, 2018, 429: 41-45. doi:  10.1016/j.optcom.2018.07.084
[57]

Zhou Hongping, Chen Lei, Shen Fei, et al. A broadband achromatic metalens in mid-infrared region [J]. Physical Review Applied, 2019, 11: 024046. doi:  10.1103/PhysRevApplied.11.024046
[58]

Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces [J]. Nano Letters, 2013, 13(2): 829-834. doi:  10.1021/nl304761m
[59]

Zhou Junxiao, Qian Haoliang, Hu Guangwei, et al. Broadband photonic spin Hall meta-lens [J]. ACS Nano, 2018, 12(1): 82-88.
[60]

Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science, 2016, 352(6290): 1190-1194. doi:  10.1126/science.aaf6644
[61]

Arbabi A, Arbabi E, Kamali S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations [J]. Nature Communications, 2016, 7(1): 1-9.
[62]

Wang Wei, Zhao Zehan, Guo Zhongyi, et al. Spin-selected dual-wavelength plasmonic metalenses [J]. Nanomaterials, 2019, 9(5): 761-770. doi:  10.3390/nano9050761
[63]

Khorasaninejad M, Crozier K B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter [J]. Nature Communications, 2014, 5(1): 1-6.
[64]

Wang Shuming, Wu Pin Chieh, Su V C, et al. Broadband achromatic optical metasurface devices [J]. Nature Communications, 2017, 8(1): 1-9. doi:  10.1038/s41467-016-0009-6
[65]

Ni Xingjie, Kildishev A V, Shalaev V M. Metasurface holograms for visible light [J]. Nature Communications, 2013, 4: 2807. doi:  10.1038/ncomms3807
[66]

Chen Weiting, Yang Kuangyu, Wang Chih-Ming, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images [J]. Nano Letters, 2014, 14(1): 225-230. doi:  10.1021/nl403811d
[67]

Huang Lingling, Chen Xianzhong, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface [J]. Nature Communications, 2013, 4(1): 1-8.
[68]

Zheng Guoxing, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi:  10.1038/nnano.2015.2
[69]

Wen Dandan, Yue Fuyong, Li Guixin, et al. Helicity multiplexed broadband metasurface holograms [J]. Nature Communications, 2015, 6(1): 1-7.
[70]

Khorasaninejad M, Ambrosio A, Kanhaiya P, et al. Broadband and chiral binary dielectric meta-holograms [J]. Science Advances, 2016, 2(5): e1501258. doi:  10.1126/sciadv.1501258
[71]

Li Rongzhen, Shen Fei, Sun Yongxuan, et al. Broadband, high-efficiency, arbitrary focusing lens by a holographic dielectric meta-reflectarray [J]. Journal of Physics D: Applied Physics, 2016, 49(14): 145101-145107. doi:  10.1088/0022-3727/49/14/145101
[72]

Zhao Yang, Andrea Alù. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates [J]. Nano Letters, 2013, 13(3): 1086-1091.
[73]

Pors A, Nielsen M G, Bozhevolnyi S I. Broadband plasmonic half-wave plates in reflection [J]. Optics Letters, 2013, 38(4): 513-515. doi:  10.1364/OL.38.000513
[74]

Yang Yuanmu, Wang Wenyi, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation [J]. Nano Letters, 2014, 14(3): 1394-1399. doi:  10.1021/nl4044482
[75]

Yin Zhiping, Chen Fujia, Zhu Lie, et al. High-efficience dielectric metasurfaces for simultaneously engineering polarization and wavefront [J]. Journal of Material Chemistry C, 2018, 6: 6354-6359. doi:  10.1039/C8TC01669K
[76]

Ding Fei, Wang Zhouxian, He Sailing, et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach [J]. ACS Nano, 2015, 9(4): 4111-4119. doi:  10.1021/acsnano.5b00218
[77]

Wu Pin Chieh, Tsai Weiyi, Chen Weiting, et al. Versatile polarization generation with an aluminum plasmonic metasurface [J]. Nano Letters, 2017, 17(1): 445-452. doi:  10.1021/acs.nanolett.6b04446
[78]

Shen Fei, Kang Qianlong, Wang Jingjing, et al. Dielectric metasurface-based high-efficiency mid-infrared optical filter [J]. Nanomaterials, 2018, 8(11): 938. doi:  10.3390/nano8110938
[79]

Wang Jingjing, Guo Kai, Guo Zhongyi. THz filter based on the Si microdisk array [J]. AIP Advances, 2019, 9: 045106. doi:  10.1063/1.5083004
[80]

Yu Nanfang, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces [J]. Nano Letters, 2012, 12(12): 6328-6333. doi:  10.1021/nl303445u
[81]

Blanchard R, Aoust G, Genevet P, et al. Modeling nanoscale V-shaped antennas for the design of optical phased arrays [J]. Physical Review B, 2012, 85(15): 155457. doi:  10.1103/PhysRevB.85.155457
[82]

Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region [J]. Nano Letters, 2017, 17(8): 4902-4907.
[83]

Hu Jingpei, Zhao Xiaonan, Lin Yu, et al. All-dielectric metasurface circular dichroism waveplate [J]. Scientific Reports, 2017, 7: 41893. doi:  10.1038/srep41893
[84]

Hermon S, Ma A, Yue F, et al. Metasurface hologram for polarization measurement [J]. Optics Letters, 2019, 44(18): 4436-4438. doi:  10.1364/OL.44.004436
[85]

Chen Weibin, Abeysinghe D C, Nelson R L, et al. Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer [J]. Nano Letters, 2010, 10(6): 2075-2079. doi:  10.1021/nl100340w
[86]

Yang Shuangyang, Chen Weibin, Nelson R L, et al. Miniature circular polarization analyzer with spiral plasmonic lens [J]. Optics Letters, 2009, 34(20): 3047-3049. doi:  10.1364/OL.34.003047
[87]

Miao Junjie, Wang Yongsheng, Guo Chuanfei, et al. Plasmonic lens with multiple-turn spiral nano-structures [J]. Plasmonics, 2011, 6(2): 235-239. doi:  10.1007/s11468-010-9193-0
[88]

Miao Junjie, Wang Yongsheng, Guo Chuanfei, et al. Far-field focusing of spiral plasmonic lens [J]. Plasmonics, 2012, 7(2): 377-381. doi:  10.1007/s11468-011-9318-0
[89]

Zhang Jingran, Guo Zhongyi, Li Rongzhen, et al. Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure [J]. Plasmonics, 2015, 10(6): 1255-1261. doi:  10.1007/s11468-015-9917-2
[90]

Zhang Jingran, Guo Zhongyi, Li Rongzhen, et al. Circular polarization analyzer based on an Archimedean nano-pinholes array [J]. Optics Express, 2015, 23(23): 30523-30531. doi:  10.1364/OE.23.030523
[91]

Liu Chuanbao, Bai Yang, Zhao Qian, et al. Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth [J]. Scientific Reports, 2016, 6(1): 34819-32825. doi:  10.1038/srep34819
[92]

Wang Wei, Guo Zhongyi, Li Rongzhen, et al. L-shaped metasurface for both the linear and circular polarization conversions [J]. Journal of Optics, 2015, 17(6): 65103-65109. doi:  10.1088/2040-8978/17/6/065103
[93]

Wang Wei, Guo Zhongyi, Li Rongzhen, et al. Ultra-thin, planar, broadband, dual-polarity plasmonic metalens [J]. Photonics Research, 2015, 3(3): 68-71. doi:  10.1364/PRJ.3.000068
[94]

Wang Wei, Li Yan, Guo Zhongyi, et al. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation [J]. Journal of Optics, 2015, 17(4): 45102-45109. doi:  10.1088/2040-8978/17/4/045102
[95]

Li Rongzhen, Guo Zhongyi, Wang Wei, et al. Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators [J]. Optics Express, 2014, 22(23): 27968-27975. doi:  10.1364/OE.22.027968
[96]

Li Rongzhen, Guo Zhongyi, Wang Wei, et al. High-efficiency cross polarization converters by plasmonic metasurface [J]. Plasmonics, 2015, 10(5): 1167-1172. doi:  10.1007/s11468-015-9916-3
[97]

Kang Ming, Feng Tianhua, Wang Huitian, et al. Wave front engineering from an array of thin aperture antennas [J]. Optics Express, 2012, 20(14): 15882-15890. doi:  10.1364/OE.20.015882
[98]

Li Rongzhen, Guo Zhongyi, Wang Wei, et al. Arbitrary focusing lens by holographic metasurface [J]. Photonics Research, 2015, 3(5): 252-255. doi:  10.1364/PRJ.3.000252
[99]

Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission [J]. Nature Nanotechnology, 2015, 10(11): 937. doi:  10.1038/nnano.2015.186
[100]

Arbabi E, Arbabi A, Kamali S M, et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules [J]. Optica, 2016, 3(6): 628-633. doi:  10.1364/OPTICA.3.000628
[101]

Arbabi E, Kamali S M, Arbabi A, et al. Full-Stokes imaging polarimetry using dielectric metasurfaces [J]. Acs Photonics, 2018, 5(8): 3132-3140. doi:  10.1021/acsphotonics.8b00362
[102]

Guo Zhongyi, Zhu Lie, Shen Fei, et al. Dielectric metasurface based high-efficiency polarization splitters [J]. RSC Advances, 2017, 7(16): 9872-9879. doi:  10.1039/C6RA27741A
[103]

Guo Zhongyi, Zhu Lie, Guo Kai, et al. High-order dielectric metasurfaces for high-efficiency polarization beam splitters and optical vortex generators [J]. Nanoscale Research Letters, 2017, 12(1): 1-8. doi:  10.1186/s11671-016-1773-2
[104]

Guo Zhongyi, Tian Lihua, Shen Fei, et al. Mid-infrared polarization devices based on the double-phase modulating dielectric metasurface [J]. Journal of Physics D: Applied Physics, 2017, 50(25): 254001. doi:  10.1088/1361-6463/aa6f9b
[105]

Wang Jingjing, Zhou Jian, Guo Kai, et al. High-efficiency terahertz dual-function devices based on the dielectric metasurface [J]. Superlattices and Microstructures, 2018, 120: 759-765. doi:  10.1016/j.spmi.2018.06.047
[106]

Guo Zhongyi, Xu Haisheng, Guo Kai, et al. High-efficiency visible transmitting polarizations devices based on the GaN metasurface [J]. Nanomaterials, 2018, 8(5): 333. doi:  10.3390/nano8050333
[107]

Guo Kai, Xu Haisheng, Peng Zhiyong, et al. High-efficiency full-vector polarization analyzer based on GaN metasurface [J]. IEEE Sensors Journal, 2018, 19(10): 3654-3659.
[108]

Khorasaninejad M, Chen W T, Zhu A Y, et al. Multispectral chiral imaging with a metalens [J]. Nano Letters, 2016, 16(7): 4595-4600. doi:  10.1021/acs.nanolett.6b01897
[109]

Rubin N A, D’Aversa G, Chevalier P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera [J]. Science, 2019, 365(6448): 1-8.
[110]

Wu P C, Chen J W, Yin C W, et al. Visible metasurfaces for on-chip polarimetry [J]. Acs Photonics, 2017, 5(7): 2568-2573.
[111]

Yang Zhenyu, Wang Zhaokun, Wang Yuxi, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling [J]. Nature Communications, 2018, 9(1): 1-7. doi:  10.1038/s41467-017-02088-w
[112]

Mueller J P, Balthasar, Rubin Noah A, Devlin Robert C, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization [J]. Physical Review Letters, 2017, 118(11): 113901. doi:  10.1103/PhysRevLett.118.113901
[113]

Hu Yueqiang, Li Ling, Wang Yujie, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization [J]. Nano Letters, 2020, 20: 994-1002. doi:  10.1021/acs.nanolett.9b04107
[114]

Yue Fuyong, Zhang Chunmei, Zang Xiaofei, et al. High-resolution grayscale image hidden in a laser beam [J]. Light: Science & Applications, 2018, 7(1): 17129.
[115]

Intaravanne Yuttanna, Chen Xianzhong. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles [J]. Nanophotonics, 2020, 9(5): 1003-1014. doi:  10.1515/nanoph-2019-0479
[116]

Hu Yueqiang, Wang Xudong, Luo Xuhao, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics 2020, Ahead of Print, DOI:  10.1515/nanoph-2020-0220.