[1] Kurtsiefer C, Mayer S, Zarda P, et al. Stable solid-state source of single photons [J]. Physical Review Letters, 2000, 85(2): 290-293. doi:  10.1103/PhysRevLett.85.290
[2] Sipahigil A, Goldman M L, Togan E, et al. Quantum interference of single photons from remote nitrogen-vacancy centers in diamond [J]. Physical Review Letters, 2012, 108(14): 143601. doi:  10.1103/PhysRevLett.108.143601
[3] Bharadwaj V, Jedrkiewicz O, Hadden J P, et al. Femtosecond laser written photonic and microfluidic circuits in diamond [J]. Journal of Physics: Photonics, 2019, 1(2): 022001. doi:  10.1088/2515-7647/ab0c4e
[4] Lenzini F, Gruhler N, Walter N, et al. Diamond as a platform for integrated quantum photonics [J]. Advanced Quantum Technologies, 2018, 1(3): 1800061. doi:  10.1002/qute.201800061
[5] Phillip H R, Taft E A. Kramers-Kronig analysis of reflectance data for diamond [J]. Physical Review, 1964, 136(5A): 1445-1448. doi:  10.1016/j.optmat.2018.08.062
[6] Hausmann B J M, Bulu I, Venkataraman V, et al. Diamond nonlinear photonics [J]. Nature Photonics, 2014, 8(5): 369-374. doi:  10.1038/nphoton.2014.72
[7] Aharonovich I, Neu E. Diamond nanophotonics [J]. Advanced Optical Materials, 2014, 2(10): 911-928. doi:  10.1002/adom.201400189
[8] Becker J N, Becher C. Coherence properties and quantum control of silicon vacancy color centers in diamond [J]. Physica Status Solidi a-Applications and Materials Science, 2017, 214(11): 1700586.
[9] Becker J N, Goerlitz J, Arend C, et al. Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond [J]. Nature Communications, 2016, 7: 13512. doi:  10.1038/ncomms13512
[10] Khanaliloo B, Jayakumar H, Hryciw A C, et al. Single-crystal diamond nanobeam waveguide optomechanics [J]. Physical Review X, 2015, 5(4): 041051. doi:  10.1103/PhysRevX.5.041051
[11] Burek M J, Chu Y, Liddy M S Z, et al. High quality-factor optical nanocavities in bulk single-crystal diamond [J]. Nature Communications, 2014, 5: 5718. doi:  10.1038/ncomms6718
[12] Lagomarsino S, Olivero P, Bosia F, et al. Evidence of light guiding in ion-implanted diamond [J]. Physical Review Letters, 2010, 105(23): 233903. doi:  10.1103/PhysRevLett.105.233903
[13] Toyli D M, Weis C D, Fuchs G D, et al. Chip-scale nanofabrication of single spins and spin arrays in diamond [J]. Nano Letters, 2010, 10(8): 3168-3172. doi:  10.1021/nl102066q
[14] Sotillo B, Bharadwaj V, Fernandez T T, et al. Femtosecond laser written diamond photonics[J]. 2018, .
[15] Ekimov E A, Kondrin M V. Vacancy-impurity centers in diamond: Prospects for synthesis and applications [J]. Physics-Uspekhi, 2017, 60(6): 539-558. doi:  10.3367/UFNe.2016.11.037959
[16] Prawer S, Su C H, Greentree A D, et al. Diamond-based single-photon emitters [J]. Reports on Progress in Physics, 2011, 74(7): 76501-76500. doi:  10.1088/0034-4885/74/7/076501
[17] Ishikawa T, Fu K M C, Santori C, et al. Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer [J]. Nano Letters, 2012, 12(4): 2083-2087. doi:  10.1021/nl300350r
[18] Rose B C, Weis C D, Tyryshkin A M, et al. Spin coherence and 14N ESEEM effects of nitrogen-vacancy centers in diamond with X-band pulsed ESR [J]. Diamond and Related Materials, 2017, 72: 32-40. doi:  10.1016/j.diamond.2016.12.009
[19] Kucsko G, Choi S, Choi J, et al. Critical thermalization of a disordered dipolar spin system in diamond [J]. Physical Review Letters, 2018, 121(2): 023601.
[20] Delgado D, Vila R. Statistical Molecular Dynamics study of displacement energies in diamond [J]. Journal of Nuclear Materials, 2011, 419(1-3): 32-38. doi:  10.1016/j.jnucmat.2011.08.035
[21] Neff M, Kononenko T V, Pimenov S M, et al. Femtosecond laser writing of buried graphitic structures in bulk diamond [J]. Applied Physics A Materials Science & Processing, 2009, 97(3): 543.
[22] Yamamoto T, Umeda T Watanabe S, et al. WatExtending spin coherence times of diamond qubits by high-temperature annealing [J]. Physical Review B, 2013, 88(7): 075206.
[23] Eaton S M, Hadden J P, Bharadwaj V, et al. Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation [J]. Advanced Quantum Technologies, 2019, 2(5-6): 1900006. doi:  10.1002/qute.201900006
[24] Schirhagl R, Chang K, Loretz M, et al. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology [J]. Annual Review of Physical Chemistry, 2014, 65: 83-105.
[25] Kononenko V V, Vlasov I I, Gololobov V M, et al. Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique [J]. Applied Physics Letters, 2017, 111(8): 1-5.
[26] Liu Y, Chen G, Song M, et al. Fabrication of nitrogen vacancy color centers by femtosecond pulse laser illumination [J]. Optics Express, 2013, 21(10): 12843-12848. doi:  10.1364/OE.21.012843
[27] Rong Y, Cheng K, Ju Z, et al. Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation [J]. Optics Letters, 2019, 44(15): 3793-3796. doi:  10.1364/OL.44.003793
[28] Lagomarsino S, Sciortino S, Obreshkov B, et al. Photoionization of monocrystalline CVD diamond irradiated with ultrashort intense laser pulse [J]. Physical Review B, 2016, 93(8): 085128.
[29] Chen Y C, Salter P S, Knauer S, et al. Laser writing of coherent colour centres in diamond [J]. Nature Photonics, 2017, 11(2): 77-80. doi:  10.1038/nphoton.2016.234
[30] Chen Y-C, Griffiths B, Weng L, et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield [J]. Optica, 2019, 6(5): 662. doi:  10.1364/OPTICA.6.000662
[31] Sotillo B, Bharadwaj V, Hadden J P, et al. Diamond photonics platform enabled by femtosecond laser writing [J]. Scientific Reports, 2016, 6: 35566.
[32] Sotillo B, Bharadwaj V, Hadden J, et al. Visible to infrared diamond photonics enabled by focused femtosecond laser pulses [J]. Micromachines, 2017, 8(2): 60. doi:  10.3390/mi8020060
[33] Sotillo B, Chiappini A, Bharadwaj V, et al. Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond [J]. Applied Physics Letters, 2018, 112(3): 031109. doi:  10.1063/1.5017108
[34] Shimotsuma Y. Three-dimensional nanostructuring of transparent materials by the femtosecond laser irradiation [J]. Journal of Laser Micro, 2006, 1(3): 181-184. doi:  10.2961/jlmn.2006.03.0006
[35] Simmonds R D, Salter P S, Jesacher A, et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system [J]. Optics Express, 2011, 19(24): 24122-24128. doi:  10.1364/OE.19.024122
[36] Sun Y, Dou J, Xu M, et al. Research on the mechanism of micromachining of CVD diamond by femtosecond laser [J]. Ferroelectrics, 2019, 549(1): 266-275. doi:  10.1080/00150193.2019.1592569
[37] Booth M J, Forcolin G T, Grilj V, et al. Study of cubic and hexagonal cell geometries of a 3D diamond detector with a proton micro-beam [J]. Diamond and Related Materials, 2017, 77: 137-145. doi:  10.1016/j.diamond.2017.06.014
[38] S. A. Murphy, Booth M, Li L, et al. Laser processing in 3D diamond detectors [J]. Nuclear Inst & Methods in Physics Research A, 2017, 845(11): 136-138.
[39] Khomich A A, Ashikkalieva K K, Bolshakov A P, et al. Very long laser-induced graphitic pillars buried in single-crystal CVD-diamond for 3D detectors realization [J]. Diamond & Related Materials, 2018, 90: 84-92.
[40] Bharadwaj V, Wang Y, Fernandez T T, et al. Femtosecond laser written diamond waveguides: A step towards integrated photonics in the far infrared [J]. Optical Materials, 2018, 85: 183-185.
[41] Hanafi H, Kroesen S, Lewes-Malandrakis G, et al. Polycrystalline diamond photonic waveguides realized by femtosecond laser lithography [J]. Optical Materials Express, 2019, 9(7): 003109. doi:  10.1364/OME.9.003109
[42] Courvoisier A, Booth M J, Salter P S. Inscription of 3D waveguides in diamond using an ultrafast laser [J]. Applied Physics Letters, 2016, 109(3): 031109.
[43] Bharadwaj V, Courvoisier A, Fernandez T T, et al. Femtosecond laser inscription of Bragg grating waveguides in bulk diamond [J]. Optics Letters, 2017, 42(17): 3451-3453. doi:  10.1364/OL.42.003451
[44] Girolami M, Conte G, Trucchi D M, et al. Investigation with β-particles and protons of buried graphite pillars in single-crystal CVD diamond [J]. Diamond & Related Materials, 2018, 84(1): 10.