[1] Thimsen E, Sadtler B, Berezin M Y. Shortwave-infrared (SWIR) emitters for biological imaging: A review of challenges and opportunities [J]. Nanophotonics, 2017, 6(5): 1043-1054. doi:  10.1515/nanoph-2017-0039
[2] Zou Y, Chakravarty S, Chung C J, et al. Mid-infrared silicon photonic waveguides and devices [Invited] [J]. Photonics Research, 2018, 6(4): 254-276. doi:  10.1364/PRJ.6.000254
[3] Lin H, Luo Z, Gu T, et al. Mid-infrared integrated photonics on silicon: A perspective [J]. Nanophotonics, 2017, 7(2): 393-420. doi:  10.1515/nanoph-2017-0085
[4] Guo R, Gao H, Cheng Z, et al. Progress in mid-infrared germanium integrated optoelectronics [J]. Chinese Journal of Lasers, 2021, 48(19): 1901002. (in Chinese)
[5] Ma H, Yang H, Tang B, et al. Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform [Invited] [J]. Chinese Optics Letters, 2021, 19(7): 071301. doi:  10.3788/COL202119.071301
[6] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs [J]. Nature Photonics, 2012, 6(7): 440-449. doi:  10.1038/nphoton.2012.142
[7] Zhang M, Zhao H, Li N. Analysis of the influence of hyperspectral spectral resolution on the mineral recognition [J]. Infrared and Laser Engineering, 2006, 35(S4): 493-498. (in Chinese)
[8] Wilson R H, Nadeau K P, Jaworski F B, et al. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization [J]. Journal of Biomedical Optics, 2015, 20(3): 030901. doi:  10.1117/1.JBO.20.3.030901
[9] Hu T, Dong B, Luo X, et al. Silicon photonic platforms for mid-infrared applications [Invited] [J]. Photonics Research, 2017, 5(5): 05000417.
[10] Wysocki G, Kosterev A A, Tittel F K. Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm [J]. Applied Physics B, 2006, 85(2-3): 301-306. doi:  10.1007/s00340-006-2369-9
[11] Refaat T F, Singh U N, Yu J, et al. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements [J]. Applied Optics, 2015, 54(6): 1387-1398. doi:  10.1364/AO.54.001387
[12] Wu J, Yue G, Chen W, et al. On-chip optical gas sensors based on group-IV materials [J]. ACS Photonics, 2020, 7(11): 2923-2940. doi:  10.1021/acsphotonics.0c00976
[13] Cai Y, Hu X. Short wave infrared imaging technology and its defence application [J]. Infrared and Laser Engineering, 2006, 35(6): 634-637. (in Chinese)
[14] Liang Y J, Liu F, Chen Y F, et al. New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared [J]. Light: Science and Applications, 2016, 5(7): e16124.
[15] Pisani M, Bianco P, Zucco M. Hyperspectral imaging for thermal analysis and remote gas sensing in the short wave infrared [J]. Applied Physics B-Lasers and Optics, 2012, 108(1): 231-236. doi:  10.1007/s00340-012-5015-8
[16] Arnob M M P, Nguyen H, Han Z, et al. Compressed sensing hyperspectral imaging in the 0.9-2.5 μm shortwave infrared wavelength range using a digital micromirror device and InGaAs linear array detector [J]. Applied Optics, 2018, 57(18): 5019-5024. doi:  10.1364/AO.57.005019
[17] Liu Z, Chen Y, Li Z, et al. High-capacity directly modulated optical transmitter for 2-μm spectral region [J]. Journal of Lightwave Technology, 2015, 33(7): 1373-1379. doi:  10.1109/JLT.2015.2397700
[18] Soref R. Enabling 2 μm communications [J]. Nature Photonics, 2015, 9(6): 358-359. doi:  10.1038/nphoton.2015.87
[19] Mashanovich G Z, Stankovic S, Topley R, et al. Silicon photonic waveguides and devices for near- and mid-IR applications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 407-418. doi:  10.1109/JSTQE.2014.2381469
[20] Su Y K, Zhang Y, Qiu C Y, et al. Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications [J]. Advanced Materials Technologies, 2020, 5(8): 1901153. doi:  10.1002/admt.201901153
[21] Soref R. Mid-infrared photonics in silicon and germanium [J]. Nature Photonics, 2010, 4(8): 495-497. doi:  10.1038/nphoton.2010.171
[22] Bristow A D, Rotenberg N, van Driel H M. Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm [J]. Applied Physics Letters, 2007, 90(19): 191104. doi:  10.1063/1.2737359
[23] Cao W, Hagan D, Thomson D J, et al. High-speed silicon modulators for the 2  μm wavelength band [J]. Optica, 2018, 5(9): 1055-1062. doi:  10.1364/OPTICA.5.001055
[24] Leo F, Kuyken B, Hattasan N, et al. Passive SOI devices for the short-wave-infrared [C]//16 th European Conference on Integrated Optics (ECIO), 2012.
[25] Kitamura R, Pilon L, Jonasz M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature [J]. Applied Optics, 2007, 46(33): 8118-8133. doi:  10.1364/AO.46.008118
[26] Miller S A, Yu M, Ji X, et al. Low-loss silicon platform for broadband mid-infrared photonics [J]. Optica, 2017, 4(7): 707-712. doi:  10.1364/OPTICA.4.000707
[27] Chen W, Wu J, Wan D, et al. Grating couplers beyond silicon TPA wavelengths based on MPW [J]. Journal of Physics D:Applied Physics, 2021, 55(1): 015109.
[28] Wang J Q, Cheng Z Z, Chen Z F, et al. Graphene photodetector integrated on silicon nitride waveguide [J]. Journal of Applied Physics, 2015, 117(14): 144504. doi:  10.1063/1.4917378
[29] Xiao T H, Cheng Z, Goda K. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits [J]. Nanotechnology, 2017, 28(24): 245201. doi:  10.1088/1361-6528/aa7128
[30] Zhou T, Jia H, Ding J, et al. On-chip broadband silicon thermo-optic 2×2 four-mode optical switch for optical space and local mode switching [J]. Optics Express, 2018, 26(7): 8375-8384. doi:  10.1364/OE.26.008375
[31] Vlasov Y, McNab S. Losses in single-mode silicon-on-insulator strip waveguides and bends [J]. Optics Express, 2004, 12(8): 1622-1631. doi:  10.1364/OPEX.12.001622
[32] Cheng Z, Tsang H K, Xu K, et al. Spectral hole burning in silicon waveguides with a graphene layer on top [J]. Optics Letters, 2013, 38(11): 1930-1932. doi:  10.1364/OL.38.001930
[33] Zhang Y, Cheng Z, Liu L, et al. Enhancement of self-phase modulation induced spectral broadening in silicon suspended membrane waveguides [J]. Journal of Optics, 2016, 18(5): 055503. doi:  10.1088/2040-8978/18/5/055503
[34] Cheng Z, Goda K. Design of waveguide-integrated graphene devices for photonic gas sensing [J]. Nanotechnology, 2016, 27(50): 505206. doi:  10.1088/0957-4484/27/50/505206
[35] Wang J, Cheng Z, Chen Z, et al. High-responsivity graphene-on-silicon slot waveguide photodetectors [J]. Nanoscale, 2016, 8(27): 13206-13211. doi:  10.1039/C6NR03122F
[36] Wang J, Zhang L, Chen Y, et al. Saturable absorption in graphene-on-waveguide devices [J]. Applied Physics Express, 2019, 12(3): 032003. doi:  10.7567/1882-0786/ab02ca
[37] Zhou W, Cheng Z, Chen X, et al. Subwavelength engineering in silicon photonic devices [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 1-13.
[38] Chen W, Yue G, Hu H, et al. Dual-mode GVD tailoring in a convex waveguide [J]. IEEE Photonics Journal, 2020, 12(4): 1-6.
[39] Sharma T, Rana V, Wang J Q, et al. Design of grating based narrow band reflector on SOI waveguide [J]. Optik, 2021, 227: 165995. doi:  10.1016/j.ijleo.2020.165995
[40] Hattasan N, Kuyken B, Leo F, et al. High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared [J]. IEEE Photonics Technology Letters, 2012, 24(17): 1536-1538. doi:  10.1109/LPT.2012.2208452
[41] Rouifed M S, Littlejohns C G, Tina G X, et al. Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm [J]. IEEE Photonics Technology Letters, 2016, 28(24): 2827-2829. doi:  10.1109/LPT.2016.2623319
[42] Hagan D E, Knights A P. Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2μm [J]. Journal of Optics, 2017, 19(2): 025801. doi:  10.1088/2040-8986/19/2/025801
[43] Li F, Jackson S D, Grillet C, et al. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared [J]. Optics Express, 2011, 19(16): 15212-15220. doi:  10.1364/OE.19.015212
[44] Cheng Z, Chen X, Wong C Y, et al. Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator [J]. IEEE Photonics Journal, 2012, 4(5): 1510-1519. doi:  10.1109/JPHOT.2012.2210700
[45] Zhou W, Cheng Z, Wu X, et al. Fully suspended slot waveguides for high refractive index sensitivity [J]. Optics Letters, 2017, 42(7): 1245-1248. doi:  10.1364/OL.42.001245
[46] Chen X, Xu K, Cheng Z, et al. Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers [J]. Optics Letters, 2012, 37(17): 3483-3485. doi:  10.1364/OL.37.003483
[47] Cheng Z, Chen X, Wong C Y, et al. Apodized focusing subwavelength grating couplers for suspended membrane waveguides [J]. Applied Physics Letters, 2012, 101(10): 101104. doi:  10.1063/1.4750071
[48] Cheng Z, Chen X, Wong C Y, et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide [J]. Optics Letters, 2012, 37(7): 1217-1219. doi:  10.1364/OL.37.001217
[49] Cheng Z, Chen X, Wong C Y, et al. Broadband focusing grating couplers for suspended-membrane waveguides [J]. Optics Letters, 2012, 37(24): 5181-5183. doi:  10.1364/OL.37.005181
[50] Cheng Z, Li Z, Xu K, et al. Increase of the grating coupler bandwidth with a graphene overlay [J]. Applied Physics Letters, 2014, 104(11): 111109. doi:  10.1063/1.4869219
[51] Cheng Z, Tsang H K. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides [J]. Optics Letters, 2014, 39(7): 2206-2209. doi:  10.1364/OL.39.002206
[52] Zhou W, Cheng Z, Sun X, et al. Tailorable dual-wavelength-band coupling in a transverse-electric-mode focusing subwavelength grating coupler [J]. Optics Letters, 2018, 43(12): 2985-2988. doi:  10.1364/OL.43.002985
[53] Kuyken B, Hattasan N, Vermeulen D, et al. Highly efficient broadband silicon-on-insulator grating couplers for the short wave infrared wavelength range [C]//Integrated Photonics Research, Silicon and Nanophotonics, 2011.
[54] Zhou W, Tsang H K. Dual-wavelength-band subwavelength grating coupler operating in the near infrared and extended shortwave infrared [J]. Optics Letters, 2019, 44(15): 3621-3624. doi:  10.1364/OL.44.003621
[55] Guo R, Gao H, Liu T, et al. Ultra-thin mid-infrared silicon grating coupler [J]. Optics Letters, 2022, 47(5): 1226-1229. doi:  10.1364/OL.449140
[56] Wang J, Cheng Z, Shu C, et al. Optical absorption in graphene-on-silicon nitride microring resonators [J]. IEEE Photonics Technology Letters, 2015, 27(16): 1765-1767. doi:  10.1109/LPT.2015.2443051
[57] Ke X, Wu Xinru, Sung Jiun-Yu, et al. Amplitude and phase modulation of UWB monocycle pulses on a silicon photonic chip [J]. IEEE Photonics Technology Letters, 2016, 28(3): 248-251. doi:  10.1109/LPT.2015.2494000
[58] Wang J, Zhang X, Wei Z, et al. Design of a dual-mode graphene-on-microring resonator for optical gas sensing [J]. IEEE Access, 2021, 9: 56479-56485. doi:  10.1109/ACCESS.2021.3072134
[59] Hu Yujie, Wang Shuxiao, Wang Dawei, et al. Research progress of mid-infrared micro-ring resonator and its application [J]. Laser & Optoelectronics Progress, 2020, 57(23): 230004. (in Chinese)
[60] Wong C Y, Cheng Z, Chen X, et al. Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning [J]. IEEE Photonics Journal, 2012, 4(4): 1095-1102. doi:  10.1109/JPHOT.2012.2204734
[61] Li J, Liu Y, Meng Y, et al. 2 μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW [J]. IEEE Photonics Technology Letters, 2018, 30(5): 471-474. doi:  10.1109/LPT.2018.2799194
[62] Xu Ke, Chen Yimin, Li Chao, et al. An ultracompact OSNR monitor based on an integrated silicon microdisk resonator [J]. IEEE Photonics Journal, 2012, 4(5): 1365-1371. doi:  10.1109/JPHOT.2012.2210278
[63] Zhang L, Dai D. Silicon subwavelength-grating microdisks for optical sensing [J]. IEEE Photonics Technology Letters, 2019, 31(15): 1209-1212. doi:  10.1109/LPT.2019.2922230
[64] Xing Z, Li C, Han Y, et al. Waveguide-integrated graphene spatial mode filters for on-chip mode-division multiplexing [J]. Optics Express, 2019, 27(14): 19188-19195. doi:  10.1364/OE.27.019188
[65] Li C, Liu D, Dai D. Multimode silicon photonics [J]. Nanophotonics, 2018, 8(2): 227-247. doi:  10.1515/nanoph-2018-0161
[66] Sun C, Ding Y, Li Z, et al. Key multimode silicon photonic devices inspired by geometrical optics [J]. ACS Photonics, 2020, 7(8): 2037-2045. doi:  10.1021/acsphotonics.0c00370
[67] Yu Y, Chen G, Sima C, et al. Intra-chip optical interconnection based on polarization division multiplexing photonic integrated circuit [J]. Optics Express, 2017, 25(23): 28330-28336. doi:  10.1364/OE.25.028330
[68] Ryckeboer E, Gassenq A, Muneeb M, et al. Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm [J]. Optics Express, 2013, 21(5): 6101-6108. doi:  10.1364/OE.21.006101
[69] Rouifed M S, Littlejohns C G, Tina G X, et al. Silicon photonic devices for the mid-infrared [C]//2017 Conference on Lasers and Electro-Optics Pacific Rim, 2017: s2264.
[70] Rouifed M S, Littlejohns C G, Tina G X, et al. Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm [J]. Optics Express, 2017, 25(10): 10893-10900. doi:  10.1364/OE.25.010893
[71] Zheng S, Huang M, Cao X, et al. Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2  μm waveband [J]. Photonics Research, 2019, 7(9): 1030-1035. doi:  10.1364/PRJ.7.001030
[72] Salzberg C D, Villa J J. Infrared refractive indexes of silicon germanium and modified Selenium glass [J]. Journal of the Optical Society of America, 1957, 47(3): 244-246. doi:  10.1364/JOSA.47.000244
[73] Liu X, Kuyken B, Roelkens G, et al. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation [J]. Nature Photonics, 2012, 6(10): 667-671. doi:  10.1038/nphoton.2012.221
[74] Kuyken B, Verheyen P, Tannouri P, et al. Mid-infrared generation by frequency down-conversion across 1.2 octaves in a normally-dispersive silicon wire [C]//Conference on Lasers and Electro-Optics (CLEO), 2013: CTh1 F. 2.
[75] Liu X, Osgood R M, Vlasov Y A, et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides [J]. Nature Photonics, 2010, 4(8): 557-560. doi:  10.1038/nphoton.2010.119
[76] Kuyken B, Liu X, Osgood R M, et al. A silicon-based widely tunable short-wave infrared optical parametric oscillator [J]. Optics Express, 2013, 21(5): 5931-5940. doi:  10.1364/OE.21.005931
[77] Kuyken B, Liu X, Osgood R M, et al. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides [J]. Optics Express, 2011, 19(21): 20172-20181. doi:  10.1364/OE.19.020172
[78] Singh N, Hudson D D, Yu Y, et al. Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire [J]. Optica, 2015, 2(9): 797-802. doi:  10.1364/OPTICA.2.000797
[79] Kou R, Hatakeyama T, Horng J, et al. Mid-IR broadband supercontinuum generation from a suspended silicon waveguide [J]. Optics Letters, 2018, 43(6): 1387-1390. doi:  10.1364/OL.43.001387
[80] Griffith A G, Lau R K, Cardenas J, et al. Silicon-chip mid-infrared frequency comb generation [J]. Nature Communications, 2015, 6: 6299. doi:  10.1038/ncomms7299
[81] Yu M, Okawachi Y, Griffith A G, et al. Mode-locked mid-infrared frequency combs in a silicon microresonator [J]. Optica, 2016, 3(8): 854-860. doi:  10.1364/OPTICA.3.000854
[82] Guo R, Chen W, Gao H, et al. Is Ge an excellent material for mid-IR Kerr frequency combs around 3 μm wavelengths [J]. Journal of Lightwave Technology, 2022, 40(7): 2097-2103. doi:  10.1109/JLT.2021.3134791
[83] Van Camp M A, Assefa S, Gill D M, et al. Demonstration of electrooptic modulation at 2165 nm using a silicon Mach-Zehnder interferometer [J]. Optics Express, 2012, 20(27): 28009-28016. doi:  10.1364/OE.20.028009
[84] Wang X, Shen W, Li W, et al. High-speed silicon photonic Mach–Zehnder modulator at 2 μm [J]. Photonics Research, 2021, 9(4): 535-540. doi:  10.1364/PRJ.417107
[85] Cao W, Liu S, Littlejohns C G, et al. High-speed silicon Michelson interferometer modulator and streamlined IMDD PAM-4 transmission of Mach-Zehnder modulators for the 2 μm wavelength band [J]. Optics Express, 2021, 29(10): 14438-14451. doi:  10.1364/OE.418285
[86] Wang J, Li Q, Huang D, et al. Design of graphene-on-germanium waveguide electro-optic modulators at the 2 μm wavelength [J]. OSA Continuum, 2019, 2(3): 749-758. doi:  10.1364/OSAC.2.000749
[87] Yue G, Xing Z, Hu H, et al. Graphene-based dual-mode modulators [J]. Optics Express, 2020, 28(12): 18456-18471. doi:  10.1364/OE.394409
[88] Zou H, Wang Y, Zhang X, et al. Optimal design and preparation of silicon-organic hybrid integrated electro-optic modulator [J]. Optics and Precision Engineering, 2020, 28(10): 2138-2150. (in Chinese) doi:  10.37188/OPE.20202810.2138
[89] Zhong C, Ma H, Sun C, et al. Fast thermo-optical modulators with doped-silicon heaters operating at 2 μm [J]. Optics Express, 2021, 29(15): 23508-23516. doi:  10.1364/OE.430756
[90] Nedeljkovic M, Soref R, Mashanovich G Z. Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14-μm infrared wavelength range [J]. IEEE Photonics Journal, 2011, 3(6): 1171-1180. doi:  10.1109/JPHOT.2011.2171930
[91] Slater B, Johnson M H, Rosenfeld L, et al. Modelling waveguide-integrated superconducting nanowire single photon detectors at short-wave infrared [C]//2018 IEEE Photonics Society Summer Topical Meeting Series (SUM), 2018: 93-94.
[92] Grote R R, Souhan B, Ophir N, et al. Extrinsic photodiodes for integrated mid-infrared silicon photonics [J]. Optica, 2014, 1(4): 264-267. doi:  10.1364/OPTICA.1.000264
[93] Hattasan N, Gassenq A, Cerutti L, et al. Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit [J]. IEEE Photonics Technology Letters, 2011, 23(23): 1760-1762. doi:  10.1109/LPT.2011.2169244
[94] Cong H, Xue C L, Zheng J, et al. Silicon based GeSn p-i-n photodetector with longwave cutoff at 2.3 μm [C]//2016 IEEE 13th International Conference on Group IV Photonics (GFP), 2016: 106-107.
[95] Zhang J, Lv J, Ni Z. Highly sensitive infrared detector based on a two-dimensional heterojunction [J]. Chinese Optics, 2021, 14(1): 87-99. (in Chinese) doi:  10.37188/CO.2020-0139
[96] Hu S, Tian R, and Gan X. Two-dimensional material photodetector for hybrid silicon photonics [J]. Chinese Optics, 2021, 14(5): 1039-1055. (in Chinese) doi:  10.37188/CO.2021-0003
[97] Guo J, Li J, Liu C, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm [J]. Light: Science & Applications, 2020, 9: 1-11. doi:  https://doi.org/10.1038/s41377-020-0263-6
[98] Souhan B, Grote R R, Chen C P, et al. Si+-implanted Si-wire waveguide photodetectors for the mid-infrared [J]. Optics Express, 2014, 22(22): 27415-27424. doi:  10.1364/OE.22.027415
[99] Ackert J J, Thomson D J, Shen L, et al. High-speed detection at two micrometres with monolithic silicon photodiodes [J]. Nature Photonics, 2015, 9(6): 393-396. doi:  10.1038/nphoton.2015.81