[1] Liu Y, Liu Y, Xiao H D, et al. 638 nm narrow linewidth diode laser with a grating external cavity [J]. Chinese Optics, 2020, 13(6): 1249-1256. (in Chinese) doi:  10.37188/CO.2020-0249
[2] Cao Y X, Shu S L, Sun F Y, et al. Development of beam combining technology in mid-infrared semiconductor lasers (Invited) [J]. Infrared and Laser Engineering, 2018, 47(10): 1003002. (in Chinese) doi:  10.3788/IRLA201847.1003002
[3] Qiu B C, Hu H, Wang W M, et al. Design and fabrication of 12 W high power and high reliability 915 nm semiconductor lasers [J]. Chinese Optics, 2018, 11(4): 590-603. (in Chinese) doi:  10.3788/co.20181104.0590
[4] Xu H W, Ning Y Q, Zeng Y G, et al. Design and epitaxial growth of quantum-well for 852 nm laser diode [J]. Optics and Precision Engineering, 2013, 21(3): 590-597. (in Chinese) doi:  10.3788/OPE.20132103.0590
[5] Yang B H, Cai Y D, Wen Z X, et al. Automatic compensation method for beam drift in long-distance laser measurement [J]. Optics and Precision Engineering, 2020, 28(11): 2393-2402. (in Chinese) doi:  10.37188/OPE.20202811.2393
[6] Lan T, Zhou G Z, Li Y, et al. Mitigation of efficiency droop in an asymmetric GaN-based high-power laser diode with sandwiched GaN/InAlN/GaN lower quantum barrier [J]. IEEE Photonics Journal, 2018, 10(6): 1-8.
[7] Zhao D M, Zhao D G. Analysis of the growth of GaN epitaxy on silicon [J]. Journal of Semiconductors, 2018, 39(3): 033006.
[8] Tian A Q, Hu L, Zhang L Q, et al. Design and growth of GaN-based blue and green laser diodes [J]. Science China Materials, 2020, 63(8): 1348-1363. doi:  10.1007/s40843-020-1275-4
[9] Lermer T, Schillgalies M, Breidenassel A, et al. Waveguide design of green InGaN laser diodes [J]. Physica Status Solidi, 2010, 207(6): 1328-1331. doi:  10.1002/pssa.200983410
[10] Zhang Y, Xu P. Research progress of GaN-based lasers [J]. Nonferrous Metal Materials and Engineering, 2020, 41(1): 54-60. (in Chinese)
[11] Zhang L Q, Jiang D S, Zhu J J, et al. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green [J]. Journal of Applied Physics, 2009, 105(2): 023104.
[12] Feng M X, Sun Q, Liu J P, et al. Al-free cladding-layer blue laser diodes with a low aspect ratio in far-field beam pattern [J]. Journal of Semiconductors, 2018, 39(8): 61-65.
[13] Liang F, Zhao D G, Jiang D S, et al. Influence of optical field distribution on GaN-based green laser diodes [J]. Chinese Journal of Lasers, 2020, 47(7): 0701018. (in Chinese)
[14] Muziol G, Turski H, Siekacz M, et al. Elimination of leakage of optical modes to GaN substrate in nitride laser diodes using a thick InGaN waveguide [J]. Applied Physics Express, 2016, 9(9): 092103.
[15] Liang F, Zhao D G, Jiang D P, et al. Suppression of optical field leakage in GaN-based green laser diode using graded-indium n-InxGa1-xN lower waveguide [J]. Superlattices and Microstructures, 2019, 132: 106153.
[16] Tang F Z, Zhu T T, Fu W Y, et al. Insight into the impact of atomic- and nano-scale indium distributions on the optical properties of InGaN/GaN quantum well structures grown on m-plane freestanding GaN substrates [J]. Journal of Applied Physics, 2019, 125(22): 225704.
[17] Kawaguchi M, Imafuji O, Nozaki S, et al. Optical-loss suppressed InGaN laser diodes using undoped thick waveguide structure[C]//Conference on Gallium Nitride Materials and Devices XI, 2016, 9748: 974818.
[18] Erbert G, Bugge F, Knigge A, et al. Highly reliable 75W InGaAs/AlGaAs laser bars with over 70% conversion efficiency [C]//Proceedings of SPIE–The International Society for Optical Engineering, 2007, 6133: 61330B.
[19] Liang F, Zhao D P, Jiang D S, et al. New design of upper waveguide with unintentionally doped InGaN layer for InGaN-based laser diode [J]. Optics & Laser Technology, 2017, 97(1): 284-289.
[20] Jong-In S, Hyungsung K, Dong-Soo S, et al. An explanation of efficiency droop in InGaN-based light emitting diodes: saturated radiative recombination rate at randomly distributed In-rich active areas [J]. Journal- Korean Physical Society, 2011, 58(3): 503-508. doi:  10.3938/jkps.58.503
[21] Dong H L, Jia T T, Liang J, et al. Improved carrier transport and photoelectric properties of InGaN/GaN multiple quantum wells with wider well and narrower barrier [J]. Optics & Laser Technology, 2020, 129: 106309.
[22] David, A, Grundmann M J, Kaeding J F, et al. Carrier distribution in (0001) InGaN∕GaN multiple quantum well light-emitting diodes [J]. Applied Physics Letters, 2008, 92(5): 053502.
[23] Chong F, Wang J, Xiong C, et al. An asymmetric broad waveguide structure for a 0.98-μm high-conversion-efficiency diode laser [J]. Journal of Semiconductors, 2009, 30(6): 64-67.
[24] Bour D P, Rosen A. Optimum cavity length for high conversion efficiency quantum well diode lasers [J]. Journal of Applied Physics, 1989, 66(7): 2813-2818. doi:  10.1063/1.344209
[25] Xu Z W, Qu Y, Wang Y Z, et al. Simulation analysis of high power asymmetric 980 nm broad-waveguide diode lasers [J]. Infrared and Laser Engineering, 2014, 43(4): 1094-1098. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.04.013