[1] Ambartsumyan R V, Kryukov P G, Letokhov V C. Dynamics of emission line narrowing for a laser with nonresonant feedback [J]. Journal of Experimental and Theoretical Physics, 1967, 6(24): 1129-1134.
[2] Ambartsumyan R V, Kryukov P G, Letokhov V C, et al. Statistical emission properties of a nonresonant Feedback laser [J]. Journal of Experimental and Theoretical Physics, 1968, 6(26): 1109-1114.
[3] Letokhov V S. Generation of light by a scattering medium with negative resonance absorption [J]. Journal of Experimental and Theoretical Physics, 1968, 4(26): 835-840.
[4] Lawandy N M, Balachandran R M, Gomes A S L, et al. Laser action in strongly scattering media [J]. Nature, 1994, 368: 436-438. doi:  10.1038/368436a0
[5] Wiersma D S, Van-Albada M P, Lagendijk A. Random laser? [J]. Nature, 1995, 373: 203-204.
[6] Wiersma D S, Lagendijk A. Light diffusion with gain and random lasers [J]. Physical Review E, 1996, 54(4): 4256-4265. doi:  10.1103/PhysRevE.54.4256
[7] Cao H, Zhao Y G, Ong H C, et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films [J]. Applied Physics Letters, 1998, 73(25): 3656-3658. doi:  10.1063/1.122853
[8] Cao H, Zhao Y G, Ho S T, et al. Random laser action in semiconductor powder [J]. Physical Review Letters, 1999, 82(11): 2278-2281. doi:  10.1103/PhysRevLett.82.2278
[9] Wang Y, Yang X, Li H, et al. Bright single-mode random laser from a concentrated solution of π-conjugated polymers [J]. Optics Letters, 2016, 41(2): 269-272. doi:  10.1364/OL.41.000269
[10] Song Q, Liu L, Xiao S, et al. Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser [J]. Physical Review Letters, 2006, 96(3): 033902. doi:  10.1103/PhysRevLett.96.033902
[11] Xia J, Xie K, Ma J, et al. The transition from incoherent to coherent random laser in defect waveguide based on organic/inorganic hybrid laser dye [J]. Nanophotonics, 2018, 7(7): 1341-1350. doi:  10.1515/nanoph-2018-0034
[12] Gollner C, Ziegler J, Protesescu L, et al. Random lasing with systematic threshold behavior in films of CdSe/CdS core/thick-shell colloidal quantum dots [J]. ACS Nano, 2015, 9(10): 9792-9801. doi:  10.1021/acsnano.5b02739
[13] Hu Z, Zhang Q, Miao B, et al. Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime [J]. Physical Review Letters, 2012, 109(25): 253901. doi:  10.1103/PhysRevLett.109.253901
[14] Fujiwara H, Suzuki T, Niyuki R, et al. ZnO nanorod array random lasers fabricated by a laser-induced hydrothermal synthesis [J]. New Journal of Physics, 2016, 18(10): 103046. doi:  10.1088/1367-2630/18/10/103046
[15] Wan Y, Deng L. Pump-controlled plasmonic random lasers from dye-doped nematic liquid crystals with TiN nanoparticles in non-oriented cells [J]. Applied Sciences, 2020, 10(1): 199.
[16] Azkargorta J, Bettinelli M, Iparraguirre I, et al. Random lasing in Nd:LuVO4 crystal powder [J]. Optics Express, 2011, 19(20): 19591-19599. doi:  10.1364/OE.19.019591
[17] Fujiwara H, Niyuki R, Ishikawa Y, et al. Low-threshold and quasi-single-mode random laser within a submicrometer-sized ZnO spherical particle film [J]. Applied Physics Letters, 2013, 102(6): 061110. doi:  10.1063/1.4792349
[18] Hu Z, Miao B, Wang T, et al. Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser [J]. Optics Letters, 2013, 38(22): 4644-4647. doi:  10.1364/OL.38.004644
[19] Perumbilavil S, Piccardi A, Barboza R, et al. Beaming random lasers with soliton control [J]. Nature communications, 2018, 9(1): 1-7. doi:  10.1038/s41467-017-02088-w
[20] Chen W C, Shiao J H, Tsai T L, et al. Multiple scattering from electrospun nanofibers with embedded silver nanoparticles of tunable shape for random lasers and white-light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2019, 12(2): 2783-2792.
[21] Tang X, Bian Y, Liu Z, et al. Room-temperature up-conversion random lasing from CsPbBr3 quantum dots with TiO2 nanotubes [J]. Optics Letters, 2019, 44(19): 4706-4709. doi:  10.1364/OL.44.004706
[22] Li X, Liu H, Xu X, et al. Lotus-leaf-inspired flexible and tunable random laser [J]. ACS Applied Materials & Interfaces, 2020, 12(8): 10050-10057.
[23] Zhang X, Yan S, Tong J, et al. Perovskite random lasers on fiber facet [J]. Nanophotonics, 2020, 9(4): 935-941. doi:  10.1515/nanoph-2019-0552
[24] Cao H. Lasing in random media [J]. Waves in Random Media, 2003, 13(3): R1-R39. doi:  10.1088/0959-7174/13/3/201
[25] Lu H, Wei C, Zhang Q, et al. Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal [J]. Photonics Research, 2019, 7(2): 137-143. doi:  10.1364/PRJ.7.000137
[26] Lu H, Yang L, Xia L, et al. Band-edge-enhanced tunable random laser using a polymer-stabilised cholesteric liquid crystal [J]. Liquid Crystals, 2020(2): 1-8.
[27] Firdaus K, Nakamura T, Adachi S. Improved lasing characteristics of ZnO/organic-dye random laser [J]. Applied Physics Letters, 2012, 100(17): 171101. doi:  10.1063/1.4705471
[28] Popov O, Zilbershtein A, Davidov D. Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength [J]. Applied Physics Letters, 2006, 89(19): 191116. doi:  10.1063/1.2364857
[29] Wang C S, Lin H Y, Lin J M, et al. Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles [J]. Applied Physics Express, 2012, 5(6): 062003. doi:  10.1143/APEX.5.062003
[30] Fan H, Mu Y, Liu C, et al. Random lasing of CsPbBr3 perovskite thin films pumped by modulated electron beam [J]. Chinese Optics Letters, 2020, 18(1): 011403. doi:  10.3788/COL202018.011403
[31] Lahoz F, Acebes A, González-Hernández T, et al. Random lasing in brain tissues [J]. Organic Electronics, 2019, 75: 105389. doi:  10.1016/j.orgel.2019.105389
[32] Zhang Z Z, Yin L C, Xu X L, et al. Near-field scattering enhancement of Perylene based aggregates for random lasing [J]. Chinese Journal of Chemical Physics, 2019, 32(6): 739-746. doi:  10.1063/1674-0068/cjcp1807167
[33] Hsu Y T, Lin Y Y, Chen Y Z, et al. 3D printed random lasers [J]. Advanced Materials Technologies, 2020, 5(1): 1900742. doi:  10.1002/admt.201900742
[34] Yin L, Liang Y, Yu B, et al. Quantitative analysis of “Δl=lslg” to coherent random lasing in solution systems with a series of solvents ordered by refractive index [J]. RSC Advances, 2016, 6(100): 98066-98070. doi:  10.1039/C6RA19029D
[35] Wu X, Cao H. Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems [J]. Physical Review A, 2008, 77(1): 013832. doi:  10.1103/PhysRevA.77.013832
[36] Cao H, Xu J Y, Chang S H, et al. Transition from amplified spontaneous emission to laser action in strongly scattering media [J]. Physical Review E, 2000, 61(2): 1985. doi:  10.1103/PhysRevE.61.1985
[37] Andreasen J, Cao H. Numerical study of amplified spontaneous emission and lasing in random media [J]. Physical Review A, 2010, 82(6): 063835. doi:  10.1103/PhysRevA.82.063835
[38] Dingjan J, Altewischer E, van Exter M P, et al. Experimental observation of wave chaos in a conventional optical resonator [J]. Physical Review Letters, 2002, 88(6): 064101. doi:  10.1103/PhysRevLett.88.064101
[39] Frahm K M, Schomerus H, Patra M, et al. Large Petermann factor in chaotic cavities with many scattering channels [J]. EPL (Europhysics Letters), 2000, 49(1): 48-54. doi:  10.1209/epl/i2000-00118-y
[40] Misirpashaev T S, Beenakker C W J. Lasing threshold and mode competition in chaotic cavities [J]. Physical Review A, 1998, 57(3): 2041-2045. doi:  10.1103/PhysRevA.57.2041
[41] Hackenbroich G, Viviescas C, Elattari B, et al. Photocount statistics of chaotic lasers [J]. Physical Review Letters, 2001, 86(23): 5262-5265. doi:  10.1103/PhysRevLett.86.5262
[42] Patra M, Schomerus H, Beenakker C W J. Quantum-limited linewidth of a chaotic laser cavity [J]. Physical Review A, 2000, 61(2): 023810. doi:  10.1103/PhysRevA.61.023810
[43] Patra M. Theory for photon statistics of random lasers [J]. Physical Review A, 2002, 65(4): 043809. doi:  10.1103/PhysRevA.65.043809
[44] Beenakker C W J. Thermal radiation and amplified spontaneous emission from a random medium [J]. Physical Review Letters, 1998, 81(9): 1829-1832. doi:  10.1103/PhysRevLett.81.1829
[45] Hackenbroich G, Viviescas C, Haake F. Field quantization for chaotic resonators with overlapping modes [J]. Physical Review Letters, 2002, 89(8): 083902. doi:  10.1103/PhysRevLett.89.083902
[46] Patra M, Beenakker C W J. Excess noise for coherent radiation propagating through amplifying random media [J]. Physical Review A, 1999, 60(5): 4059-4066. doi:  10.1103/PhysRevA.60.4059
[47] Patra M, Beenakker C W J. Propagation of squeezed radiation through amplifying or absorbing random media [J]. Physical Review A, 2000, 61(6): 063805. doi:  10.1103/PhysRevA.61.063805
[48] Soukoulis C M, Jiang X, Xu J Y, et al. Dynamic response and relaxation oscillations in random lasers [J]. Physical Review B, 2002, 65(4): 041103.
[49] Ling Y, Cao H, Burin A L, et al. Investigation of random lasers with resonant feedback [J]. Physical Review A, 2001, 64(6): 063808. doi:  10.1103/PhysRevA.64.063808
[50] Jiang X, Soukoulis C M. Localized random lasing modes and a path for observing localization [J]. Physical Review E, 2002, 65(2): 025601.
[51] Sebbah P, Vanneste C. Random laser in the localized regime [J]. Physical Review B, 2002, 66(14): 144202. doi:  10.1103/PhysRevB.66.144202
[52] Vanneste C, Sebbah P. Selective excitation of localized modes in active random media [J]. Physical Review Letters, 2001, 87(18): 183903. doi:  10.1103/PhysRevLett.87.183903
[53] Apalkov V M, Raikh M E, Shapiro B. Random resonators and prelocalized modes in disordered dielectric films [J]. Physical Review Letters, 2002, 89(1): 016802. doi:  10.1103/PhysRevLett.89.016802
[54] Jiang X, Soukoulis C M. Time dependent theory for random lasers [J]. Physical Review Letters, 2000, 85(1): 70-73. doi:  10.1103/PhysRevLett.85.70
[55] Herrmann J, Wilhelmi B. Mirrorless laser action by randomly distributed feedback in amplifying disordered media with scattering centers [J]. Applied Physics B: Lasers & Optics, 1998, 66(3): 305-312.
[56] Burin A L, Ratner M A, Cao H, et al. Random laser in one dimension [J]. Physical Review Letters, 2002, 88(9): 093904. doi:  10.1103/PhysRevLett.88.093904
[57] Wiersma D S. The physics and applications of random lasers [J]. Nature Physics, 2008, 4(5): 359-367. doi:  10.1038/nphys971
[58] Anderson P W. Absence of diffusion in certain random lattices [J]. Physical Review, 1958, 109(5): 1492-1505. doi:  10.1103/PhysRev.109.1492
[59] Abrahams E, Anderson P W, Licciardello D C, et al. Scaling theory of localization: Absence of quantum diffusion in two dimensions [J]. Physical Review Letters, 1979, 42(10): 673-676. doi:  10.1103/PhysRevLett.42.673
[60] Ioffe A F, Regel A R. Non-crystalline, amorphous and liquid electronic semiconductors [J]. Prog Semicond, 1960, 4(89): 237-291.
[61] Keller O. On the theory of spatial localization of photons [J]. Physics Reports, 2005, 411(1-3): 1-232.
[62] John S. Localization of light [J]. Phys Today, 1991, 44(5): 32-40. doi:  10.1063/1.881300
[63] He S, Maynard J D. Detailed measurements of inelastic scattering in Anderson localization [J]. Physical Review Letters, 1986, 57(25): 3171-3174. doi:  10.1103/PhysRevLett.57.3171
[64] Crosignani B, Sa’ar A, Yariv A. Coherent backscattering and localization in a single-mode fiber with random imperfections [J]. Physical Review A, 1991, 43(6): 3168. doi:  10.1103/PhysRevA.43.3168
[65] Zhang Z Q, Sheng P. Wave localization in random networks [J]. Physical Review B, 1994, 49(1): 83. doi:  10.1103/PhysRevB.49.83
[66] Szameit A, Zeil P, Dreisow F, et al. Wave localization at the boundary of disordered photonic lattices [J]. Optics Letters, 2010, 35(8): 1172-1174. doi:  10.1364/OL.35.001172
[67] Jović D M, Kivshar Y S, Denz C, et al. Anderson localization of light near boundaries of disordered photonic lattices [J]. Physical Review A, 2011, 83(3): 033813. doi:  10.1103/PhysRevA.83.033813
[68] Karbasi S, Mirr C R, Yarandi P G, et al. Observation of transverse Anderson localization in an optical fiber [J]. Optics Letters, 2012, 37(12): 2304-2306. doi:  10.1364/OL.37.002304
[69] Pradhan P, Kumar N. Localization of light in coherently amplifying random media [J]. Physical Review B, 1994, 50(13): 9644. doi:  10.1103/PhysRevB.50.9644
[70] Kumar N, Pradhan P, Jayannavar A M. Coherently amplifying random medium: Statistics of super-reflection [J]. Superlattices and Microstructures, 1998, 23(3-4): 853-858. doi:  10.1006/spmi.1997.0546
[71] Störzer M, Gross P, Aegerter C M, et al. Observation of the critical regime near Anderson localization of light [J]. Physical Review Letters, 2006, 96(6): 063904. doi:  10.1103/PhysRevLett.96.063904
[72] Illarramendi M A, Cascales C, Aramburu I, et al. Characterization of light propagation in NdxY1-xAl(BO3)4 laser crystal powders [J]. Optical Materials, 2007, 30(1): 126-128. doi:  10.1016/j.optmat.2006.11.038
[73] Wu X, Fang W, Yamilov A, et al. Random lasing in weakly scattering systems [J]. Physical Review A, 2006, 74(5): 053812. doi:  10.1103/PhysRevA.74.053812
[74] Li S, Wang Z J, Chen L S, et al. Collective behavior and disorder-induced resonator of random lasers [J]. Applied Physics Letters, 2005, 86(17): 171109. doi:  10.1063/1.1920409
[75] Ferjani S, Sorriso-Valvo L, De Luca A, et al. Statistical analysis of random lasing emission properties in nematic liquid crystals [J]. Physical Review E, 2008, 78(1): 011707. doi:  10.1103/PhysRevE.78.011707
[76] Conti C, Leonetti M, Fratalocchi A, et al. Condensation in disordered lasers: Theory, 3D+1 simulations, and experiments [J]. Physical Review Letters, 2008, 101(14): 143901. doi:  10.1103/PhysRevLett.101.143901
[77] Ruocco G, Abaie B, Schirmacher W, et al. Disorder-induced single-mode transmission [J]. Nature Communications, 2017, 8(1): 1-6. doi:  10.1038/s41467-016-0009-6
[78] Hu L, Xie K, Hu Z, et al. Experimental observation of wave localization at the Dirac frequency in a two-dimensional photonic crystal microcavity [J]. Optics Express, 2018, 26(7): 8213-8223. doi:  10.1364/OE.26.008213
[79] Abaie B, Peysokhan M, Zhao J, et al. Disorder-induced high-quality wavefront in an Anderson localizing optical fiber [J]. Optica, 2018, 5(8): 984-987. doi:  10.1364/OPTICA.5.000984
[80] Schirmacher W, Abaie B, Mafi A, et al. What is the right theory for Anderson localization of light? An experimental test [J]. Physical Review Letters, 2018, 120(6): 067401. doi:  10.1103/PhysRevLett.120.067401
[81] Cao H, Jiang X, Ling Y, et al. Mode repulsion and mode coupling in random lasers [J]. Physical Review B, 2003, 67(16): 161101. doi:  10.1103/PhysRevB.67.161101
[82] van der Molen K L, Mosk A P, Lagendijk A. Intrinsic intensity fluctuations in random lasers [J]. Physical Review A, 2006, 74(5): 053808. doi:  10.1103/PhysRevA.74.053808
[83] Fallert J, Dietz R J B, Sartor J, et al. Co-existence of strongly and weakly localized random laser modes [J]. Nature Photonics, 2009, 3(5): 279-282. doi:  10.1038/nphoton.2009.67
[84] Stano P, Jacquod P. Suppression of interactions in multimode random lasers in the Anderson localized regime [J]. Nature Photonics, 2013, 7(1): 66-71. doi:  10.1038/nphoton.2012.298
[85] Synergetics H H. Self-Organizing Systems[M]// Boston, MA: Springer, 1987: 417-434.
[86] Gordon A, Vodonos B, Smulakovski V, et al. Melting and freezing of light pulses and modes in mode-locked lasers [J]. Optics Express, 2003, 11(25): 3418-3424. doi:  10.1364/OE.11.003418
[87] Gordon A, Fischer B. Phase transition theory of pulse formation in passively mode-locked lasers with dispersion and Kerr nonlinearity [J]. Optics Communications, 2003, 223(1-3): 151-156. doi:  10.1016/S0030-4018(03)01622-5
[88] Weill R, Rosen A, Gordon A, et al. Critical behavior of light in mode-locked lasers [J]. Physical Review Letters, 2005, 95(1): 013903. doi:  10.1103/PhysRevLett.95.013903
[89] Arecchi F T. Optical morphogenesis: pattern formation and competition in nonlinear optics [J]. Physica D: Nonlinear Phenomena, 1995, 86(1-2): 297-322. doi:  10.1016/0167-2789(95)00110-P
[90] Arecchi F T, Boccaletti S, Ramazza P L. Pattern formation and competition in nonlinear optics [J]. Physics Reports, 1999, 318(1-2): 1-83. doi:  10.1016/S0370-1573(99)00007-1
[91] Vodonos B, Weill R, Gordon A, et al. Formation and annihilation of laser light pulse quanta in a thermodynamic-like pathway [J]. Physical Review Letters, 2004, 93(15): 153901. doi:  10.1103/PhysRevLett.93.153901
[92] Florescu L, John S. Photon statistics and coherence in light emission from a random laser [J]. Physical Review Letters, 2004, 93(1): 013602. doi:  10.1103/PhysRevLett.93.013602
[93] Angelani L, Conti C, Ruocco G, et al. Glassy behavior of light [J]. Physical Review Letters, 2006, 96(6): 065702. doi:  10.1103/PhysRevLett.96.065702
[94] Angelani L, Conti C, Ruocco G, et al. Glassy behavior of light in random lasers [J]. Physical Review B, 2006, 74(10): 104207. doi:  10.1103/PhysRevB.74.104207
[95] Antenucci F, Conti C, Crisanti A, et al. General phase diagram of multimodal ordered and disordered lasers in closed and open cavities [J]. Physical Review Letters, 2015, 114(4): 043901. doi:  10.1103/PhysRevLett.114.043901
[96] Antenucci F, Crisanti A, Leuzzi L. Complex spherical 2+4 spin glass: A model for nonlinear optics in random media [J]. Physical Review A, 2015, 91(5): 053816. doi:  10.1103/PhysRevA.91.053816
[97] Ghofraniha N, Viola I, Di Maria F, et al. Experimental evidence of replica symmetry breaking in random lasers [J]. Nature Communications, 2015, 6(1): 1-8.
[98] Gomes A S L, Lima B C, Pincheira P I R, et al. Glassy behavior in a one-dimensional continuous-wave erbium-doped random fiber laser [J]. Physical Review A, 2016, 94(1): 011801. doi:  10.1103/PhysRevA.94.011801
[99] Gomes A S L, Raposo E P, Moura A L, et al. Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements [J]. Scientific Reports, 2016, 6: 27987. doi:  10.1038/srep27987
[100] Araújo C B, Gomes A S L, Raposo E P. Lévy statistics and the glassy behavior of light in random fiber lasers [J]. Applied Sciences, 2017, 7(7): 644. doi:  10.3390/app7070644
[101] Xia J, He J, Xie K, et al. Replica symmetry breaking in FRET‐assisted random laser based on electrospun polymer fiber [J]. Annalen Der Physik, 2019, 531(9): 1900066. doi:  10.1002/andp.201900066
[102] de Matos C J S, Menezes L S, Brito-Silva A M, et al. Random fiber laser [J]. Physical Review Letters, 2007, 99(15): 153903. doi:  10.1103/PhysRevLett.99.153903
[103] Van Exter M P, Nienhuis G, Woerdman J P. Two simple expressions for the spontaneous emission factor β [J]. Physical Review A, 1996, 54(4): 3553. doi:  10.1103/PhysRevA.54.3553
[104] Hu Z, Zheng H, Wang L, et al. Random fiber laser of POSS solution-filled hollow optical fiber by end pumping [J]. Optics Communications, 2012, 285(19): 3967-3970. doi:  10.1016/j.optcom.2012.05.048
[105] Hu Z, Gao P, Xie K, et al. Wavelength control of random polymer fiber laser based on adaptive disorder [J]. Optics Letters, 2014, 39(24): 6911-6914. doi:  10.1364/OL.39.006911
[106] Zhang W L, Zheng M Y, Ma R, et al. Fiber-type random laser based on a cylindrical waveguide with a disordered cladding layer [J]. Scientific Reports, 2016, 6: 26473. doi:  10.1038/srep26473
[107] Turitsyn S K, Babin S A, Churkin D V, et al. Random distributed feedback fibre lasers [J]. Physics Reports, 2014, 542(2): 133-193. doi:  10.1016/j.physrep.2014.02.011
[108] Lizárraga N, Puente N P, Chaikina E I, et al. Single-mode Er-doped fiber random laser with distributed Bragg grating feedback [J]. Optics Express, 2009, 17(2): 395-404. doi:  10.1364/OE.17.000395
[109] Shapira O, Fischer B. Localization of light in a random-grating array in a single-mode fiber [J]. JOSA B, 2005, 22(12): 2542-2552. doi:  10.1364/JOSAB.22.002542
[110] Gagné M, Bojor L, Maciejko R, et al. Novel custom fiber Bragg grating fabrication technique based on push-pull phase shifting interferometry [J]. Optics Express, 2008, 16(26): 21550-21557. doi:  10.1364/OE.16.021550
[111] Gagné M, Kashyap R. Random fiber Bragg grating Raman fiber laser [J]. Optics Letters, 2014, 39(9): 2755-2758. doi:  10.1364/OL.39.002755
[112] Wang L, Dong X, Shum P P, et al. Random laser with multiphase-shifted Bragg grating in Er/Yb-codoped fiber [J]. Journal of Lightwave Technology, 2015, 33(1): 95-99. doi:  10.1109/JLT.2014.2374216
[113] Abdullina S R, Vlasov A A, Lobach I A, et al. Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG [J]. Laser Physics Letters, 2016, 13(7): 075104. doi:  10.1088/1612-2011/13/7/075104
[114] Hu Z, Ma R, Zhang X, et al. Weak feedback assisted random fiber laser from 45°-tilted fiber Bragg grating [J]. Optics Express, 2019, 27(3): 3255-3263. doi:  10.1364/OE.27.003255
[115] Churkin D V, Babin S A, El-Taher A E, et al. Raman fiber lasers with a random distributed feedback based on Rayleigh scattering [J]. Physical Review A, 2010, 82(3): 033828. doi:  10.1103/PhysRevA.82.033828
[116] Agrawal G P. Fiber-Optic Communication Systems[M]. US: John Wiley & Sons, 2012.
[117] Babin S A. Random fiber laser based on Rayleigh scattering: Basic principles and experimental results[C]//Photonics Global Conference, IEEE, 2010: 1-5.
[118] Hulst H C, Hulst H C. Light Scattering by Small Particles[M]. US: Courier Corporation, 1981.
[119] Cardona M. 固体中的光散射[M]. 北京: 科学出版社, 1986.
[120]

Boyd R W. Nonlinear Optics[M]. 3rd ed. US: Elsevier, 2008.
[121] Agrawal G. 非线性光纤光学[M]. 第5版. 贾东方, 葛春风, 等译. 北京: 电子工业出版社, 2014.

Agrawal G. Nonlinear Fiber Optics [M]. 5th ed. Jia Dongfang, Ge Chunfeng, et al. translated. Beijing: Publishing House of Electronics Industry, 2014. (in Chinese)
[122]

Giles C R, Desurvire E. Modeling erbium-doped fiber amplifiers [J]. Journal of Lightwave Technology, 1991, 9(2): 271-283. doi:  10.1109/50.65886
[123]

Fotiadi A A. An incoherent fibre laser [J]. Nature Photonics, 2010, 4(4): 204-205. doi:  10.1038/nphoton.2010.76
[124]

Ye J, Zhang Y, Xu J, et al. Broadband pumping enabled flat-amplitude multi-wavelength random Raman fiber laser [J]. Optics Letters, 2020, 45(7): 1786-1789. doi:  10.1364/OL.389071
[125]

Xu J, Wu J, Ye J, et al. Optical rogue wave in random fiber laser [J]. Photonics Research, 2020, 8(1): 1-7. doi:  10.1364/PRJ.8.000001
[126]

Kharif C, Pelinovsky E. Physical mechanisms of the rogue wave phenomenon [J]. European Journal of Mechanics B/Fluids, 2003, 22: 603-634.
[127]

Gorbunov O A, Sugavanam S, Vatnik I D, et al. Poisson distribution of extreme events in radiation of random distributed feedback fiber laser [J]. Optics Letters, 2020, 45(8): 2375-2378. doi:  10.1364/OL.390492
[128]

Babin S A, El-Taher A E, Harper P, et al. Tunable random fiber laser [J]. Physical Review A, 2011, 84(2): 021805. doi:  10.1103/PhysRevA.84.021805
[129]

Zhang L, Jiang H, Yang X, et al. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser [J]. Optics Letters, 2016, 41(2): 215-218. doi:  10.1364/OL.41.000215
[130]

Zhang L, Jiang H, Yang X, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser [J]. Scientific Reports, 2017, 7: 42611. doi:  10.1038/srep42611
[131]

Hu Z, Xia J, Liang Y, et al. Tunable random polymer fiber laser [J]. Optics Express, 2017, 25(15): 18421-18430. doi:  10.1364/OE.25.018421
[132]

Xie Z, Xie K, Hu T, et al. Multi-wavelength coherent random laser in bio-microfibers [J]. Optics Express, 2020, 28(4): 5179-5188. doi:  10.1364/OE.384105
[133]

Perumbilavil S, Piccardi A, Buchnev O, et al. Soliton-assisted random lasing in optically-pumped liquid crystals [J]. Applied Physics Letters, 2016, 109(16): 161105. doi:  10.1063/1.4965852
[134]

Du X, Zhang H, Wang X, et al. Multiwavelength Raman fiber laser based on polarization maintaining fiber loop mirror and random distributed feedback [J]. Laser Physics Letters, 2015, 12(4): 045106. doi:  10.1088/1612-2011/12/4/045106
[135]

Zhu Y Y, Zhang W L, Jiang Y. Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering [J]. IEEE Photonics Technology Letters, 2013, 25(16): 1559-1561. doi:  10.1109/LPT.2013.2271044
[136]

Sugavanam S, Yan Z, Kamynin V, et al. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter [J]. Optics Express, 2014, 22(3): 2839-2844. doi:  10.1364/OE.22.002839
[137]

Huang C, Dong X, Zhang N, et al. Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 294-298. doi:  10.1109/JSTQE.2014.2301018
[138]

Huang C, Dong X, Zhang S, et al. Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains [J]. IEEE Photonics Technology Letters, 2014, 26(13): 1287-1290. doi:  10.1109/LPT.2014.2321386
[139]

Wang Z, Wu H, Fan M, et al. Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering [J]. Optics Express, 2013, 21(24): 29358-29363. doi:  10.1364/OE.21.029358
[140]

Wu H, Wang Z, Jia X, et al. Flat amplitude multiwavelength Brillouin–Raman random fiber laser with a half-open cavity [J]. Applied Physics B, 2013, 112(4): 467-471. doi:  10.1007/s00340-013-5569-0
[141]

Ahmad H, Zulkifli M Z, Jemangin M H, et al. Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band [J]. Laser Physics Letters, 2013, 10(5): 055102. doi:  10.1088/1612-2011/10/5/055102
[142]

Zhang Y, Ye J, Xu J, et al. Dual-wavelength random distributed feedback fiber laser with wavelength, linewidth, and power ratio tunability [J]. Optics Express, 2020, 28(7): 10515-10523. doi:  10.1364/OE.390796
[143]

Yusoff N M, Lau K Y, Abidin N H Z, et al. Dual-wavelength random fiber laser incorporating micro-air cavity [J]. Journal of Optics, 2020, 22(3): 035603. doi:  10.1088/2040-8986/ab68f1
[144]

Dontsova E I, Kablukov S I, Vatnik I D, et al. Frequency doubling of Raman fiber lasers with random distributed feedback [J]. Optics Letters, 2016, 41(7): 1439-1442. doi:  10.1364/OL.41.001439
[145]

Turitsyn S K, Babin S A, El-Taher A E, et al. Random distributed feedback fibre laser [J]. Nature Photonics, 2010, 4(4): 231-235. doi:  10.1038/nphoton.2010.4
[146]

Wang Z, Wu H, Fan M, et al. Random fiber laser: simpler and brighter [J]. Opt Photon News, 2014, 25(12): 30.
[147]

Zhang H, Huang L, Zhou P, et al. More than 400 W random fiber laser with excellent beam quality [J]. Optics Letters, 2017, 42(17): 3347-3350. doi:  10.1364/OL.42.003347
[148]

Xu J, Lou Z, Ye J, et al. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects [J]. Optics Express, 2017, 25(5): 5609-5617. doi:  10.1364/OE.25.005609
[149]

Du X, Zhang H, Xiao H, et al. High‐power random distributed feedback fiber laser: From science to application [J]. Annalen der Physik, 2016, 528(9-10): 649-662. doi:  10.1002/andp.201600099
[150]

Zhang H, Zhou P, Wang X, et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation [J]. Optics Express, 2015, 23(13): 17138-17144. doi:  10.1364/OE.23.017138
[151]

Du X, Zhang H, Ma P, et al. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser [J]. Optics letters, 2015, 40(22): 5311-5314. doi:  10.1364/OL.40.005311
[152]

Xu J, Huang L, Jiang M, et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output [J]. Photonics Research, 2017, 5(4): 350-354. doi:  10.1364/PRJ.5.000350
[153]

Zhang J, Bai G, Li X, et al. 1.36-kW spectral-narrowing fiber laser seeded by random fiber laser [J]. IEEE Photonics Technology Letters, 2019, 31(16): 1343-1346. doi:  10.1109/LPT.2019.2916610
[154]

Zhang H, Zhou P, Xiao H, et al. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power [J]. Laser Physics Letters, 2014, 11(7): 075104. doi:  10.1088/1612-2011/11/7/075104
[155]

Zlobina E A, Kablukov S I, Babin S A. Linearly polarized random fiber laser with ultimate efficiency [J]. Optics Letters, 2015, 40(17): 4074-4077. doi:  10.1364/OL.40.004074
[156]

Babin S A, Dontsova E I, Kablukov S I. Random fiber laser directly pumped by a high-power laser diode [J]. Optics Letters, 2013, 38(17): 3301-3303. doi:  10.1364/OL.38.003301
[157]

Vatnik I D, Churkin D V, Podivilov E V, et al. High-efficiency generation in a short random fiber laser [J]. Laser Physics Letters, 2014, 11(7): 075101. doi:  10.1088/1612-2011/11/7/075101
[158]

Du X, Zhang H, Wang X, et al. Short cavity-length random fiber laser with record power and ultrahigh efficiency [J]. Optics Letters, 2016, 41(3): 571-574. doi:  10.1364/OL.41.000571
[159]

Babin S A, Zlobina E A, Kablukov S I, et al. High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth [J]. Scientific Reports, 2016, 6: 22625. doi:  10.1038/srep22625
[160]

Lou Z, Jin X, Zhang H, et al. High power, high-order random Raman fiber laser based on tapered fiber [J]. IEEE Photonics Journal, 2017, 9(1): 1-6.
[161]

Evmenova E A, Kuznetsov A G, Nemov I N, et al. 2nd-order random lasing in a multimode diode-pumped graded-index fiber [J]. Scientific Reports, 2018, 8(1): 1-7. doi:  10.1038/s41598-017-17765-5
[162]

Zhang H, Du X, Zhou P, et al. Tapered fiber based high power random laser [J]. Optics Express, 2016, 24(8): 9112-9118. doi:  10.1364/OE.24.009112
[163]

Zhang H, Ye J, Zhou P, et al. Tapered-fiber-enabled high-power, high-spectral-purity random fiber lasing [J]. Optics Letters, 2018, 43(17): 4152-4155. doi:  10.1364/OL.43.004152
[164]

Tang Y, Xu J. A random Q-switched fiber laser [J]. Scientific Reports, 2015, 5(1): 1-5. doi:  10.9734/JSRR/2015/14076
[165]

Ye J, Xu J, Song J, et al. Pump scheme optimization of an incoherently pumped high-power random fiber laser [J]. Photonics Research, 2019, 7(9): 977-983. doi:  10.1364/PRJ.7.000977
[166]

Wu H, Wang Z, Sun W, et al. 1.5 μm low threshold, high efficiency random fiber laser with hybrid erbium–raman gain [J]. Journal of Lightwave Technology, 2017, 36(4): 844-849.
[167]

Ye L, Liu B, Zhao C, et al. The electrically and magnetically controllable random laser from dye-doped liquid crystals [J]. Journal of Applied Physics, 2014, 116(5): 053103. doi:  10.1063/1.4891683
[168]

Wang Z, Cao M, Shao G, et al. Coherent random lasing in colloidal quantum dot-doped polymer-dispersed liquid crystal with low threshold and high stability [J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 767-774. doi:  10.1021/acs.jpclett.9b03409
[169]

Pang M, Bao X, Chen L. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser [J]. Optics Letters, 2013, 38(11): 1866-1868. doi:  10.1364/OL.38.001866
[170]

Sugavanam S, Tarasov N, Shu X, et al. Narrow-band generation in random distributed feedback fiber laser [J]. Optics Express, 2013, 21(14): 16466-16472. doi:  10.1364/OE.21.016466
[171]

Leandro D, Rota-Rodrigo S, Ardanaz D, et al. Narrow-linewidth multi-wavelength random distributed feedback laser [J]. Journal of Lightwave Technology, 2015, 33(17): 3591-3596. doi:  10.1109/JLT.2015.2445377
[172]

Xu Y, Gao S, Lu P, et al. Low-noise Brillouin random fiber laser with a random grating-based resonator [J]. Optics Letters, 2016, 41(14): 3197-3200. doi:  10.1364/OL.41.003197
[173]

Popov S M, Butov O V, Bazakutsa A P, et al. Random lasing in a short Er-doped artificial Rayleigh fiber [J]. Results in Physics, 2020, 16: 102868. doi:  10.1016/j.rinp.2019.102868
[174]

Wiersma D S, Cavalieri S. Temperature-controlled random laser action in liquid crystal infiltrated systems[J]. Physical Review E, 2002, 66(5): 056612.
[175]

Wang C, Liu J, Liu H. Characteristic of polarization of random laser[C]//Proceedings of SPIE, International Society for Optics and Photonics, 2005, 5644: 714-722.
[176]

Liu J S, Xiong Z, Chun W. Theoretical investigation on polarization-dependent laser action in two-dimensional random media [J]. Journal of Optics A: Pure and Applied Optics, 2007, 9(7): 658. doi:  10.1088/1464-4258/9/7/016
[177]

Knitter S, Kues M, Fallnich C. Spectro-polarimetric signature of a random laser [J]. Physical Review A, 2013, 88(1): 013839. doi:  10.1103/PhysRevA.88.013839
[178]

Knitter S, Kues M, Haidl M, et al. Linearly polarized emission from random lasers with anisotropically amplifying media [J]. Optics Express, 2013, 21(25): 31591-31603. doi:  10.1364/OE.21.031591
[179]

Niay P, Bernage P, Taunay T, et al. Polarization selectivity of gratings written in Hi-Bi fibers by the external method [J]. IEEE photonics technology letters, 1995, 7(4): 391-393. doi:  10.1109/68.376812
[180]

Loh W H, Samson B N, Dong L, et al. High performance single frequency fiber grating-based erbium: ytterbium-codoped fiber lasers [J]. Journal of Lightwave Technology, 1998, 16(1): 114. doi:  10.1109/50.654992
[181]

Du X, Zhang H, Wang X, et al. Investigation on random distributed feedback Raman fiber laser with linear polarized output [J]. Photonics Research, 2015, 3(2): 28-31. doi:  10.1364/PRJ.3.000028
[182]

Leong E S P, Yu S F, Abiyasa A P, et al. Polarization characteristics of ZnO rib waveguide random lasers [J]. Applied Physics Letters, 2006, 88(9): 091116. doi:  10.1063/1.2181634
[183]

Knitter S, Kues M, Fallnich C. Emission polarization of random lasers in organic dye solutions [J]. Optics Letters, 2012, 37(17): 3621-3623. doi:  10.1364/OL.37.003621
[184]

Yao F, Zhou W, Bian H, et al. Polarization and polarization control of random lasers from dye-doped nematic liquid crystals [J]. Optics Letters, 2013, 38(9): 1557-1559. doi:  10.1364/OL.38.001557
[185]

Yao B C, Rao Y J, Wang Z N, et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers [J]. Scientific Reports, 2015, 5: 18526.
[186]

Lisinetskii V, Ryabchun A, Bobrovsky A, et al. Photochromic composite for random lasing based on porous polypropylene infiltrated with azobenzene-containing liquid crystalline mixture [J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26595-26602.
[187]

Ye L, Zhao C, Feng Y, et al. Study on the polarization of random lasers from dye-doped nematic liquid crystals [J]. Nanoscale Research Letters, 2017, 12(1): 1-8. doi:  10.1186/s11671-016-1773-2
[188]

Chen C W, Huang H P, Jau H C, et al. Polarization-asymmetric bidirectional random laser emission from a twisted nematic liquid crystal [J]. Journal of Applied Physics, 2017, 121(3): 033102. doi:  10.1063/1.4974476
[189]

Andreasen J, Asatryan A A, Botten L C, et al. Modes of random lasers [J]. Advances in Optics and Photonics, 2011, 3(1): 88-127. doi:  10.1364/AOP.3.000088
[190]

Liang H K, Yu S F, Yang H Y. ZnO random laser diode arrays for stable single-mode operation at high power [J]. Applied Physics Letters, 2010, 97(24): 241107. doi:  10.1063/1.3527922
[191]

Bachelard N, Andreasen J, Gigan S, et al. Taming random lasers through active spatial control of the pump [J]. Physical Review Letters, 2012, 109(3): 033903. doi:  10.1103/PhysRevLett.109.033903
[192]

Hisch T, Liertzer M, Pogany D, et al. Pump-controlled directional light emission from random lasers [J]. Physical Review Letters, 2013, 111(2): 023902. doi:  10.1103/PhysRevLett.111.023902
[193]

Leuzzi L, Conti C, Folli V, et al. Phase diagram and complexity of mode-locked lasers: from order to disorder [J]. Physical Review Letters, 2009, 102(8): 083901. doi:  10.1103/PhysRevLett.102.083901
[194]

Leonetti M, Conti C, Lopez C. The mode-locking transition of random lasers [J]. Nature Photonics, 2011, 5(10): 615-617. doi:  10.1038/nphoton.2011.217
[195]

Ma R, Zhang W L, Zeng X P, et al. Quasi mode-locking of coherent feedback random fiber laser [J]. Scientific Reports, 2016, 6: 39703. doi:  10.1038/srep39703
[196]

Zhang W L, Song Y B, Zeng X P, et al. Temperature-controlled mode selection of Er-doped random fiber laser with disordered Bragg gratings [J]. Photonics Research, 2016, 4(3): 102-105. doi:  10.1364/PRJ.4.000102
[197]

Rayleigh L. CXII. The problem of the whispering gallery [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1910, 20(120): 1001-1004. doi:  10.1080/14786441008636993
[198]

Zhu H, Yu S F, Wang Q J, et al. Directional single-mode emission from coupled whispering gallery resonators realized by using ZnS microbelts [J]. Optics Letters, 2013, 38(9): 1527-1529. doi:  10.1364/OL.38.001527
[199]

Xu Z, Tong J, Shi X, et al. Tailoring whispering gallery lasing and random lasing in a compound cavity [J]. Polymers, 2020, 12(3): 656. doi:  10.3390/polym12030656
[200]

Ignesti E, Tommasi F, Fini L, et al. A new class of optical sensors: a random laser based device [J]. Scientific Reports, 2016, 6(1): 1-6. doi:  10.1038/s41598-016-0001-8
[201]

Shi X, Ge K, Tong J H, et al. Low-cost biosensors based on a plasmonic random laser on fiber facet [J]. Optics Express, 2020, 28(8): 12233-12242. doi:  10.1364/OE.392661
[202]

Gaio M, Caixeiro S, Marelli B, et al. Gain-based mechanism for pH sensing based on random lasing [J]. Physical Review Applied, 2017, 7(3): 034005. doi:  10.1103/PhysRevApplied.7.034005
[203]

Miao S, Zhang W, Huang W, et al. High-resolution static strain sensor based on random fiber laser and beat frequency interrogation [J]. IEEE Photonics Technology Letters, 2019, 31(18): 1530-1533. doi:  10.1109/LPT.2019.2937009
[204]

Miao S, Zhang W, Song Y, et al. High-resolution random fiber laser acoustic emission sensor [J]. Optics Express, 2020, 28(9): 12699-12708. doi:  10.1364/OE.389135
[205]

He J, Hu S, Ren J, et al. Biofluidic random laser cytometer for biophysical phenotyping of cell suspensions [J]. ACS Sensors, 2019, 4(4): 832-840. doi:  10.1021/acssensors.8b01188
[206]

Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination [J]. Nature Photonics, 2012, 6(6): 355-359. doi:  10.1038/nphoton.2012.90
[207]

Mermillod-Blondin A, Mentzel H, Rosenfeld A. Time-resolved microscopy with random lasers [J]. Optics Letters, 2013, 38(20): 4112-4115. doi:  10.1364/OL.38.004112
[208]

Liu Y, Yang W, Xiao S, et al. Surface-emitting perovskite random lasers for speckle-free imaging [J]. ACS Nano, 2019, 13(9): 10653-10661. doi:  10.1021/acsnano.9b04925
[209]

Guo J, Rao Y, Zhang W, et al. Dental imaging with near-infrared transillumination using random fiber laser [J]. Photonic Sensors, 2020, 10: 333-339. doi:  10.1007/s13320-020-0582-5
[210]

Ma R, Wang Z, Zhang H H, et al. Imaging through opacity using a near-infrared low-spatial-coherence fiber light source [J]. Optics Letters, 2020, 45(13): 3816-3819. doi:  10.1364/OL.397152
[211]

Wu H, Han B, Wang Z, et al. Temporal ghost imaging with random fiber lasers [J]. Optics Express, 2020, 28(7): 9957-9964. doi:  10.1364/OE.387762
[212]

Fernandez-Vallejo M, Bravo M, Lopez-Amo M. Ultra-long laser systems for remote fiber Bragg gratings arrays interrogation [J]. IEEE Photonics Technology Letters, 2013, 25(14): 1362-1364. doi:  10.1109/LPT.2013.2265916
[213]

Wang Z, Sun W, Wu H, et al. Long-distance random fiber laser point sensing system incorporating active fiber [J]. Optics Express, 2016, 24(20): 22448-22453. doi:  10.1364/OE.24.022448
[214]

Tan M, Rosa P, Le S T, et al. Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping [J]. Optics Express, 2016, 24(3): 2215-2221. doi:  10.1364/OE.24.002215
[215]

Leandro D, deMiguel-Soto V, López-Amo M. High-resolution sensor system using a random distributed feedback fiber laser [J]. Journal of Lightwave Technology, 2016, 34(19): 4596-4602. doi:  10.1109/JLT.2016.2536650
[216]

Wang Z N, Zeng J J, Li J, et al. Ultra-long phase-sensitive OTDR with hybrid distributed amplification [J]. Optics Letters, 2014, 39(20): 5866-5869. doi:  10.1364/OL.39.005866
[217]

Rosa P, Rizzelli G, Tan M, et al. Characterisation of random DFB Raman laser amplifier for WDM transmission [J]. Optics Express, 2015, 23(22): 28634-28639. doi:  10.1364/OE.23.028634
[218]

Wang Z N, Rao Y J, Wu H, et al. Long-distance fiber-optic point-sensing systems based on random fiber lasers [J]. Optics Express, 2012, 20(16): 17695-17700. doi:  10.1364/OE.20.017695
[219]

Leandro D, Soto V M, Perez-Herrera R A, et al. Random DFB fiber laser for remote (200 km) sensor monitoring using hybrid WDM/TDM [J]. Journal of Lightwave Technology, 2016, 34(19): 4430-4436. doi:  10.1109/JLT.2016.2547868
[220]

Fu Y, Zhu R, Han B, et al. 175-km repeaterless BOTDA with hybrid high-order random fiber laser amplification [J]. Journal of Lightwave Technology, 2019, 37(18): 4680-4686. doi:  10.1109/JLT.2019.2916413
[221]

Boschetti A, Taschin A, Bartolini P, et al. Spectral super-resolution spectroscopy using a random laser [J]. Nature Photonics, 2020, 14(3): 177-182. doi:  10.1038/s41566-019-0558-4
[222]

Gao S, Zhang L, Xu Y, et al. High-speed random bit generation via brillouin random fiber laser with non-uniform fibers [J]. IEEE Photonics Technology Letters, 2017, 29(16): 1352-1355. doi:  10.1109/LPT.2017.2722381