[1] Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217. doi:  10.1038/nature06401
[2] Gaeta A L, Lipson M, Kippenberg T J, et al. Photonic-chip-based frequency combs [J]. Nature Photon, 2019, 13: 158-169. doi:  10.1038/s41566-019-0358-x
[3] Kovach A, Chen D Y, He J H, et al. Emerging material systems for integrated optical Kerr frequency combs [J]. Advances in Optics and Photonics, 2020, 12(1): 135-222. doi:  10.1364/AOP.376924
[4] Wang M Y, Fan L K, Wu L F, et al. Research on Kerr optical frequency comb generation based on MgF2 crystalline microresonator with ultra-high-Q factor [J]. Infrared and Laser Engineering, 2021, 50(11): 20210481. (in Chinese) doi:  10.3788/IRLA20210481
[5] Xue X X, Xu Y, Wang P H, et al. Normal-dispersion microcombs enabled by controllable mode interactions [J]. Laser & Photonics Reviews, 2015, 9(4): L23-L28.
[6] Yu M J, Okawachi Y, Griffith A G, et al. Modelocked mid-infrared frequency combs in a silicon microresonator [J]. Optica, 2016, 3(8): 854-860. doi:  10.1364/OPTICA.3.000854
[7] Weng H Z, Liu J, Afridi A A, et al. Octave-spanning Kerr frequency comb generation with stimulated Raman scattering in an AlN microresonator [J]. Optics Letters, 2021, 46(3): 540-543. doi:  10.1364/OL.416460
[8] Wang C, Zhang M, Yu M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation [J]. Nature Communications, 2019, 10: 978. doi:  10.1038/s41467-019-08969-6
[9] Chang L, Xie W Q, Shu H W, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators [J]. Nature Communications, 2020, 11: 1313. doi:  https://doi.org/10.1038/s41467-020-15005-5
[10] Chen H J, Ji Q X, Wang H M, et al. Chaos-assisted two-octave-spanning microcombs [J]. Nature Communications, 2020, 11: 2336. doi:  10.1038/s41467-020-15914-5
[11] Moille G, Li Q, Briles T C, et al. Broadband resonator-waveguide coupling for efficient extraction of octave spanning microcombs [J]. Optics Letters, 2019, 44(19): 4737-4740. doi:  10.1364/OL.44.004737
[12] Kuse N, Tetsumoto T, Navickaite G, et al. Continuous scanning of a dissipative Kerr microresonator soliton comb for broadband, high resolution spectroscopy [J]. Optics Letters, 2020, 45(4): 927-930. doi:  10.1364/OL.383036
[13] Haojing Chen, Yunfeng Xiao. Applications of integrated microresonator-based optical frequency combs in precision measurement [J]. Infrared and Laser Engineering, 2021, 50(11): 20210560. (in Chinese) doi:  10.3788/IRLA20210560
[14] Pfeiffer M H P, Herkommer C, Liu J Q, et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators [J]. Optica, 2017, 4(7): 684-691. doi:  10.1364/OPTICA.4.000684
[15] Li Q, Briles T C, Westly D A, et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime [J]. Optica, 2017, 4(2): 193-203. doi:  10.1364/OPTICA.4.000193
[16] Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J]. Science, 2015, 351(6271): 357-360.
[17] Joshi C, Jang J K, Luke K, et al. Thermally controlled comb generation and soliton modelocking in microresonators [J]. Optics Letters, 2016, 41(11): 2565-2568. doi:  10.1364/OL.41.002565
[18] Wan S, Niu R, Wang Z Y, et al. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators [J]. Photonics Research, 2020, 8(8): 1342-1349. doi:  10.1364/PRJ.397619
[19] Weng H Z, Afridi A A, Liu J, et al. Near-octave-spanning breathing soliton crystal in an AlN microresonator [J]. Optics Letters, 2021, 46(14): 3436-3439. doi:  10.1364/OL.422842
[20] Liu X W, Gong Z, Bruch A W, et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing [J]. Nature Communications, 2021, 12(1): 1-7. doi:  10.1038/s41467-020-20314-w
[21] Weng H Z, Afridi A A, Li J, et al. Dual-mode microresonators as straightforward access to octave-spanning dissipative Kerr solitons [J]. arXiv, 2022: 2202.09786. doi:  https://doi.org/10.48550/arXiv.2202.09786
[22] Weng H Z, Liu J, Afridi A A, et al. Directly accessing octave spanning dissipative Kerr soliton frequency combs in an AlN microresonator [J]. Photonics Research, 2021, 9(7): 1351-1357. doi:  10.1364/PRJ.427567
[23] Liu J, Weng H Z, Afridi A A, et al. Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation [J]. Optics Express, 2020, 28(13): 395013. doi:  10.1364/OE.395013
[24] Yi X, Yang Q F, Yang K Y, et al. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities [J]. Optics Letters, 2016, 41(15): 3419-3422. doi:  10.1364/OL.41.003419