[1] 李小路, 曾晶晶, 王皓, 等. 三维扫描激光雷达系统设计及实时成像技术[J]. 红外与激光工程, 2019, 48(5): 0503004. doi:  0503004

Li Xiaolu, Zeng Jingjing, Wang Hao, et al. Design and real-time imaging technology of three-dimensional scanning LiDAR [J]. Infrared and Laser Engineering, 2019, 48(5): 0503004. (in Chinese) doi:  0503004
[2] 曹杰, 郝群, 张芳华, 等. APD三维成像激光雷达研究进展[J]. 红外与激光工程, 2020, 49(9): 20190549.

Cao Jie, Hao Qun, Zhang Fanghua, et al. Research progress of APD three-dimensional imaging lidar [J]. Infrared and Laser Engineering, 2020, 49(9): 20190549. (in Chinese)
[3] 徐沛拓, 陶雨婷, 刘志鹏, 等. 海洋激光雷达实验与仿真结果的对比[J]. 红外与激光工程, 2020, 49(2): 0203007. doi:  10.3788/IRLA202049.0203007

Xu Peituo, Tao Yuting, Liu Zhipeng, et al. Comparison of oceanic lidar experiments and simulation results [J]. Infrared and Laser Engineering, 2020, 49(2): 0203007. (in Chinese) doi:  10.3788/IRLA202049.0203007
[4] 范小辉, 许国良, 李万林, 等. 基于深度图的三维激光雷达点云目标分割方法[J]. 中国激光, 2019, 46(7): 0710002. doi:  10.3788/CJL201946.0710002

Fan Xiaohui, Xu Guoliang, Li Wanlin, et al. Target Segmentation Method for Three-Dimensional LiDAR Point Cloud Based on Depth Image [J]. Chinese Journal of Lasers, 2019, 46(7): 0710002. (in Chinese) doi:  10.3788/CJL201946.0710002
[5] 王海伟, 丁宇星, 黄庚华, 等. 轻小型全天时远程光子计数激光雷达系统技术[J]. 红外与激光工程, 2019, 48(1): 0106005. doi:  10.3788/IRLA201948.0106005

Wang Haiwei, Ding Yuxing, Huang Genghua, et al. Research on the long-range and compact photon counting ladar system under sunlight condition [J]. Infrared and Laser Engineering, 2019, 48(1): 0106005. (in Chinese) doi:  10.3788/IRLA201948.0106005
[6] 张河辉, 丁宇星, 黄庚华. 光子计数激光测深系统[J]. 红外与激光工程, 2019, 48(1): 0106002. doi:  10.3788/IRLA201948.0106002

Zhang Hehui, Ding Yuxing, Huang Genghua. Photon counting laser bathymetry system [J]. Infrared and Laser Engineering, 2019, 48(1): 0106002. (in Chinese) doi:  10.3788/IRLA201948.0106002
[7] 赵远, 张子静, 马昆, 等. 高灵敏度的光子偏振激光雷达系统[J]. 红外与激光工程, 2016, 45(9): 0902001. doi:  10.3788/IRLA201645.0902001

Zhao Yuan, Zhang Zijing, Ma Kun, et al. High sensitivity photon polarization laser radar system [J]. Infrared and Laser Engineering, 2016, 45(9): 0902001. (in Chinese) doi:  10.3788/IRLA201645.0902001
[8]

Li S, Zhang Z, Ma Y, et al. Ranging performance models based on negative-binomial (NB) distribution for photon-counting lidars [J]. Optics Express, 2019, 27(12): A861-A877. doi:  10.1364/OE.27.00A861
[9]

Kirmani A, Venkatraman D, Shin D, et al. First-photon imaging [J]. Science, 2014, 343(6166): 58-61.
[10]

Tobin R, Halimi A, McCarthy A, et al. Long-range depth profiling of camouflaged targets using single-photon detection [J]. Optical Engineering, 2017, 57(3): 031303.
[11]

Ren M, Gu X, Liang Y, et al. Laser ranging at 1 550 nm with 1 GHz sine-wave gated InGaAs/InP APD single-photon detector [J]. Optics Express, 2011, 19(14): 13497-13502. doi:  10.1364/OE.19.013497
[12]

Hernandez-Marin S, Wallace A M, Gibson G J. Bayesian analysis of lidar signals with multiple returns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2170-2180. doi:  10.1109/TPAMI.2007.1122
[13]

Bhandari A, Wallace A M, Raskar R. Super-resolved time-of-flight sensing via FRI sampling theory[C]// 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016: 4009-4013.
[14] 郭忠义, 汪信洋, 李德奎, 等. 偏振信息传输理论及应用进展[J]. 红外与激光工程, 2020, 49(6): 20201013. doi:  10.3788/IRLA20201013

Guo Zhongyi, Wang Xinyang, Li Dekui, et al. Advances on theory and application of polarization information propagation [J]. Infrared and Laser Engineering, 2020, 49(6): 20201013. (in Chinese) doi:  10.3788/IRLA20201013
[15]

Pe'eri S, Long B. LIDAR technology applied in coastal studies and management [J]. Journal of Coastal Research, 2011(62): 1-5.
[16]

Churnside J H. Polarization effects on oceanographic lidar [J]. Optics Express, 2008, 16(2): 1196-1207. doi:  10.1364/OE.16.001196
[17]

Mitchell S, Thayer J P, Hayman M. Polarization lidar for shallow water depth measurement [J]. Applied Optics, 2010, 49(36): 6995-7000. doi:  10.1364/AO.49.006995
[18]

Xu L, Zhang Y, Zhang Y, et al. Restraint of range walk error in a Geiger-mode avalanche photodiode lidar to acquire high-precision depth and intensity information [J]. Applied Optics, 2016, 55(7): 1683-1687. doi:  10.1364/AO.55.001683
[19]

Barton-Grimley R A, Thayer J P, Hayman M. Nonlinear target count rate estimation in single-photon lidar due to first photon bias [J]. Optics Letters, 2019, 44(5): 1249-1252. doi:  10.1364/OL.44.001249
[20]

Oh M S, Kong H J, Kim T H, et al. Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode [J]. Optics Communications, 2010, 283(2): 304-308. doi:  10.1016/j.optcom.2009.10.009
[21]

He W, Sima B, Chen Y, et al. A correction method for range walk error in photon counting 3D imaging LIDAR [J]. Optics Communications, 2013, 308: 211-217. doi:  10.1016/j.optcom.2013.05.040
[22]

Ye L, Gu G, He W, et al. A real-time restraint method for range walk error in 3-D imaging lidar via dual detection [J]. IEEE Photonics Journal, 2018, 10(2): 1-9.
[23]

Lu S Y, Chipman R A. Interpretation of Mueller matrices based on polar decomposition [J]. Journal of the Optical Society of America A, 1996, 13(5): 1106-1113. doi:  10.1364/JOSAA.13.001106
[24]

Xu L, Zhang Y, Zhang Y, et al. Signal restoration method for restraining the range walk error of Geiger-mode avalanche photodiode lidar in acquiring a merged three-dimensional image [J]. Applied Optics, 2017, 56(11): 3059-3063. doi:  10.1364/AO.56.003059
[25] 徐璐, 杨旭, 吴龙, 等. 距离漂移误差抑制获取Gm-APD激光雷达高精度三维像[J]. 红外与激光工程, 2020, 49(10): 20200218.

Xu Lu, Yang Xu, Wu Long, et al. Restrain range walk error of Gm-APD lidar to acquire high-precision 3D image [J]. Infrared and Laser Engineering, 2020, 49(10): 20200218. (in Chinese)