[1] Shao W, Yang Q, Zhang C, et al. Planar dual-cavity hot-electron photodetectors [J]. Nanoscale, 2019, 11(3): 1396-1402. doi:  10.1039/C8NR05369C
[2] Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas [J]. Science, 2011, 332(6030): 702-704. doi:  10.1126/science.1203056
[3] Wang L, He S J, Wang K Y, et al. Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector [J]. Nanotechnology, 2018, 29(50): 505203. doi:  10.1088/1361-6528/aae360
[4] Yang Z, Du K, Wang H, et al. Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure [J]. Nanotechnology, 2019, 30(7): 075204. doi:  10.1088/1361-6528/aaf4a6
[5] Qiu Kaifang, Zhai Aiping, Wang Wenyan, et al. Research progress on surface plasmon hot-carrier photodetectors [J]. Semiconductor Technology, 2020, 45(3): 169-178. (in Chinese)
[6] He Weidi, Su Dan, Wang Shanjiang, et al. Progress of surface plasmon nanostructure enhanced photodetector (Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 20211014. (in Chinese)
[7] Sun R N, Peng K Q, Hu B, et al. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications [J]. Applied Physics Letters, 2015, 107(1): 013107.
[8] Wu B H, Liu W T, Chen T Y, et al. Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays [J]. Nano Energy, 2016, 27: 412-419. doi:  10.1016/j.nanoen.2016.07.029
[9] Yan Xianyong, Zhai Aiping, Shi Linlin, et al. Research progress on solar water splitting based on hot carrier effect of surface plasmon polaritons [J]. Semiconductor Technology, 2021, 46(8): 581-590, 616. (in Chinese)
[10] Ishii S, Shinde S L, Nagao T. Nonmetallic materials for plasmonic hot carrier excitation [J]. Advanced Optical Materials, 2018, 7(1): 00603.
[11] Jang Y J, Chung K, Lee J S, et al. Plasmonic hot carriers imaging: promise and outlook [J]. ACS Phontonics, 2018, 5(12): 4711-4723.
[12] Ho Y-L, Tai Y-H, Clark J K, et al. Plasmonic hot-carriers in channel-coupled nanogap structure for metal–semiconductor barrier modulation and spectral-selective plasmonic monitoring [J]. ACS Photonics, 2018, 5(7): 2617-2623. doi:  10.1021/acsphotonics.7b01307
[13] Li W, Valentine J G. Harvesting the loss: Surface plasmon-based hot electron photodetection [J]. Nanophotonics, 2017, 6(1): 177-191. doi:  10.1515/nanoph-2015-0154
[14] Zayats A V, Maier S. Hot-electron effects in plasmonics and plasmonic materials [J]. Advanced Optical Materials, 2017, 5(15): 1700508.
[15] Kösemen A, Alpaslan Kösemen Z, Canimkubey B, et al. Fe doped TiO2 thin film as electron selective layer for inverted solar cells [J]. Solar Energy, 2016, 132: 511-517. doi:  10.1016/j.solener.2016.03.049
[16] Wang Qilong, Li Yupei, Zhai Yusheng, et al. Progress of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction [J]. Infrared and Laser Engineering, 2019, 48(2): 0203002. (in Chinese)
[17] Zhang C, Qian Q, Qin L, et al. Broadband light harvesting for highly efficient hot-electron application based on conformal metallic nanorod arrays [J]. ACS Photonics, 2018, 5(12): 5079-5085. doi:  10.1021/acsphotonics.8b01389
[18] Tanzid M, Ahmadivand A, Zhang R, et al. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection [J]. ACS Photonics, 2018, 5(9): 3472-3477. doi:  10.1021/acsphotonics.8b00623
[19] Mirzaee S M A, Lebel O, Nunzi J M. Simple unbiased hot-electron polarization-sensitive near-infrared photodetector [J]. ACS Appl Mater Interfaces, 2018, 10(14): 11862-11871.
[20] Luo X, Zhao F, Liang Y, et al. Facile nanogold-perovskite enabling ultrasensitive flexible broadband photodetector with pW scale detection limit [J]. Advanced Optical Materials, 2018, 6(23): 1800996.
[21] Gao Linhua, Cui Yanxia, Liang Qiangbing, et al. Research progress in metal-inorganic semiconductor-metal photodetectors [J]. Infrared and Laser Engineering, 2020, 49(8): 20201025. (in Chinese)
[22] Wu K, Zhan Y, Wu S, et al. Surface-plasmon enhanced photodetection at communication band based on hot electrons [J]. Journal of Applied Physics, 2015, 118(6): 063101. doi:  10.1063/1.4928133
[23] Fang Z, Liu Z, Wang Y, et al. Graphene-antenna sandwich photodetector [J]. Nano Letters, 2012, 12(7): 3808-3813. doi:  10.1021/nl301774e
[24] Zhang C, Wu K, Ling B, et al. Conformal TCO-semiconductor-metal nanowire array for narrowband and polarization-insensitive hot-electron photodetection application [J]. Journal of Photonics for Energy, 2016, 6(4): 042502. doi:  10.1117/1.JPE.6.042502
[25] Nusir A I, Abbey G P, Hill A M, et al. Hot electrons in microscale thin-film Schottky barriers for enhancing near-infrared detection [J]. IEEE Photonics Technology Letters, 2016, 28(20): 2241-2244. doi:  10.1109/LPT.2016.2591261
[26] Nazirzadeh M A, Atar F B, Turgut B B, et al. Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection [J]. Sci Rep, 2014, 4: 7103.
[27] Qi Z, Zhai Y, Wen L, et al. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection [J]. Nanotechnology, 2017, 28(27): 275202. doi:  10.1088/1361-6528/aa74a3
[28] Besteiro L V, Kong X T, Wang Z, et al. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms [J]. ACS Photonics, 2017, 4(11): 2759-2781. doi:  10.1021/acsphotonics.7b00751
[29] Ratchford D C, Dunkelberger A D, Vurgaftman I, et al. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films [J]. Nano Lett, 2017, 17(10): 6047-6055. doi:  10.1021/acs.nanolett.7b02366
[30] Gundlach L, Ernstorfer R, Willig F. Escape dynamics of photoexcited electrons at catechol: TiO2(110) [J]. Physical Review B, 2006, 74(3): 035324.
[31] Tobaldi D, Piccirillo C, Rozman N, et al. Effects of Cu, Zn and Cu-Zn addition on the microstructure and antibacterial and photocatalytic functional properties of Cu-Zn modified TiO2 nano-heterostructures [J]. Journal of Photochemistry Photobiology A: Chemistry, 2016, 330: 44-54. doi:  10.1016/j.jphotochem.2016.07.016
[32] Shinotsuka H, Tanuma S, Powell C J, et al. Calculations of electron inelastic mean free paths. X. data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm [J]. Surface and Interface Analysis, 2015, 47(9): 871-888. doi:  10.1002/sia.5789
[33] Fang Y, Jiao Y, Xiong K, et al. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures [J]. Nano Letters, 2015, 15(6): 4059. doi:  10.1021/acs.nanolett.5b01070
[34] Liang F X, Wang J Z, Wang Y, et al. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection [J]. Applied Surface Science, 2017, 426: 391-398. doi:  10.1016/j.apsusc.2017.07.051
[35] Hartland G V, Besteiro L V, Johns P, et al. What’s so hot about electrons in metal nanoparticles? [J]. ACS Energy Letters, 2017, 2(7): 1641-1653. doi:  10.1021/acsenergylett.7b00333
[36] Zhang H, Govorov A O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement [J]. The Journal of Physical Chemistry C, 2014, 118(14): 7606-7614. doi:  10.1021/jp500009k
[37] Moskovits M J S. Hot electrons cross boundaries [J]. Science, 2011, 332(6030): 676-677.
[38] Shiraishi Y, Yasumoto N, Imai J, et al. Quantum tunneling injection of hot electrons in Au/TiO2 plasmonic photocatalysts [J]. Nanoscale, 2017, 9(24): 8349-8361. doi:  10.1039/C7NR02310C
[39] Li Y, Guo Y, Li Y, et al. Fabrication of Cd-doped TiO2 nanorod arrays and photovoltaic property in perovskite solar cell [J]. Electrochimica Acta, 2016, 200: 29-36. doi:  10.1016/j.electacta.2016.03.091