[1] Zhao Changming, Wang Yunshi, Guo Ludeng, et al. Development of laser wireless power transmission technology [J]. Laser Technology, 2020, 44(5): 538-545. (in Chinese) doi:  10.7510/jgjs.issn.1001-3806.2020.05.003
[2] Jin K, Zhou W. Wireless laser power transmission: A review of recent progress [J]. IEEE Transactions on Power Electronics, 2018, 34(4): 3842-3859. doi:  10.1109/TPEL.2018.2853156
[3] Liu Xiaoguang, Hua Wenshen, Liu Xun, et al. Methods to improve efficiency of photovoltaic receiver for laser powered unmanned aerial vehicle [J]. Infrared and Laser Engineering, 2016, 45(3): 101-105. (in Chinese) doi:  10.3788/IRLA201645.0306002
[4] Barask A, Hongru C, YoshimuraY, et al. Energy orbit-laser power transmission to satellites using small space solar power satellite constellation [J]. Space Solar Power Systems, 2022, 7: 12-17. doi:  10.24662/sspss.7.0_12
[5] Sun Zhiyu, Lu Jian, Zhang Hongchao, et al. Performance test of solar cell under laser energy transmission and signal transmission [J]. Infrared and Laser Engineering, 2022, 51(2): 20210888. (in Chinese) doi:  10.3788/IRLA20210888
[6] Yang Qingdong, Yang Huomu, Wang Jun, et al. MPPT integrated simulation system for laser wireless power transmission [J]. Infrared and Laser Engineering, 2022, 51(5): 20210522. (in Chinese) doi:  10.3788/IRLA20210522
[7] Assaf B, Joseph A. Performance analysis of concentrator photovoltaic dense-arrays under non-uniform irradiance [J]. Solar Energy Materials and Solar Cells, 2013, 117: 110-119. doi:  10.1016/j.solmat.2013.04.029
[8] Debashisha J, Vanjari V. Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review [J]. Renewable and Sustainable Energy Reviews, 2015, 52: 400-417. doi:  10.1016/j.rser.2015.07.079
[9] Wu Zhengnan, Xie Jiangrong, Yang Yannan. Effect of light intensity uniformity on the photoelectric conversion efficiency of GaAs cells [J]. Infrared and Laser Engineering, 2017, 46(6): 0606001. (in Chinese) doi:  10.3788/IRLA201746.0606001
[10] Yuan Jianhua, Wang Lin, Zhao Ziwei, et al. MPPT technology of laser powered UAVbased on improved bat algorithm [J]. Laser & Infrared, 2022, 52(6): 814-819. (in Chinese) doi:  10.3969/j.issn.1001-5078.2022.06.004
[11] Tey K S, Mekhilef S, Seyedmahmoudian M, et al. Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation [J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4322-4333. doi:  10.1109/TII.2018.2793210
[12] Başoğlu M E. Comprehensive review on distributed maximum power point tracking: Submodule level and module level MPPT strategies [J]. Solar Energy, 2022, 241: 85-108. doi:  10.1016/j.solener.2022.05.039
[13] Mohapatra A, Nayak B, Das P, et al. A review on MPPT techniques of PV system under partial shading condition [J]. Renewable and Sustainable Energy Reviews, 2017, 80: 854-867. doi:  10.1016/j.rser.2017.05.083
[14] Aniruddha K M, Jayanta B, Anjana K G, et al. A simple real-time DMPPT algorithm for PV systems operating under mismatch conditions [J]. Journal of Power Electronics, 2018, 18(3): 826-840. doi:  10.6113/JPE.2018.18.3.826
[15] Jeyaprabha S B. Distributed maximum power point tracking for mismatched modules of photovoltaic array[M]//Advanced Technologies for Solar Photovoltaics Energy Systems. Cham: Springer International Publishing, 2021.
[16] Mao M, Zhang L, Duan P, et al. Grid-connected modular PV-converter system with shuffled frog leaping algorithm based DMPPT controller [J]. Energy, 2018, 143: 181-190. doi:  10.1016/j.energy.2017.10.099
[17] Yuan J, Zhao Z, Liu Y, et al. DMPPT control of photovoltaic microgrid based on improved sparrow search algorithm [J]. IEEE Access, 2021, 9: 16623-16629. doi:  10.1109/ACCESS.2021.3052960
[18] Chu G, Wen H, Jiang L, et al. Bidirectional flyback based isolated-port submodule differential power processing optimizer for photovoltaic applications [J]. Solar Energy, 2017, 158: 929-940. doi:  10.1016/j.solener.2017.10.053
[19] Zhu T, Wang F, Shi S, et al. Optimization of time-sharing output Maximum Current Tracking (MCT) strategy in subpanel level Distributed Maximum Power Point Tracking (DMPPT) application[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016: 3435-3440.
[20] Chattopadhyay R, Bhattacharya S, Foureaux N C, et al. Low-voltage PV power integration into medium voltage grid using high-voltage SiC devices [J]. IEEJ Journal of Industry Applications, 2015, 4(6): 767-775. doi:  10.1541/ieejjia.4.767
[21] Diab-Marzouk A, Trescases O. SiC-based bidirectional cuk converter with differential power processing and MPPT for a solar powered aircraft [J]. Transportation Electrification IEEE Transactions on, 2015, 1(4): 369-381. doi:  10.1109/TTE.2015.2505302
[22] Sohn S M, Choi I S, Lim S I, et al. ASIC design of DMPPT control for photovoltaic systems[C]//2013 International SoC Design Conference (ISOCC), IEEE, 2013: 76-79.
[23] Jiang Y, Qahouq J A A. Single-sensor multi-channel maximum power point tracking controller for photovoltaic solar systems [J]. IET Power Electronics, 2012, 5(8): 1581-1592. doi:  10.1049/iet-pel.2012.0157
[24] Zhu T, He X, Guan T, et al. An integrated single inductor-single sensor based photovoltaic optimizer with an optimal current point tracking strategy[C]//2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017: 2301-2304
[25] Debdouche N, Zarour L, Chebabhi A, et al. Genetic algorithm-super-twisting technique for grid-connected PV system associate with filter [J]. Energy Reports, 2023, 10: 4231-4252. doi:  10.1016/j.egyr.2023.10.074
[26] 常佳杰. 可扩展的模块化微纳卫星电源系统的研究与设计[D]. 南京: 南京航空航天大学, 2020.