Volume 45 Issue 1
Feb.  2016
Turn off MathJax
Article Contents

Xu Zuyan, Bo Yong, Peng Qinjun, Zhang Yudong, Wei Kai, Xue Suijian, Feng Lu. Progress on sodium laser guide star[J]. Infrared and Laser Engineering, 2016, 45(1): 101001-0101001(13). doi: 10.3788/IRLA201645.0101001
Citation: Xu Zuyan, Bo Yong, Peng Qinjun, Zhang Yudong, Wei Kai, Xue Suijian, Feng Lu. Progress on sodium laser guide star[J]. Infrared and Laser Engineering, 2016, 45(1): 101001-0101001(13). doi: 10.3788/IRLA201645.0101001

Progress on sodium laser guide star

doi: 10.3788/IRLA201645.0101001
  • Received Date: 2015-05-05
  • Rev Recd Date: 2015-06-15
  • Publish Date: 2016-01-25
  • Astronomical telescope is always one of the vital tools that help human kind to unveil hidden natural laws in the universe. However, spatial resolution of the large ground-based telescope was severely limited because the turbulence of atmosphere degenerates the perfect wavefront from stars into an aberrated one, which was the key science and technology difficult problem to achieve high resolution astronomical observation. So adaptive optics(AO) was being pursuit by many teams internationally to correct the wavefront aberration and make large ground-based telescope resolving power to near diffraction limitation. It indicates that the ground-based optical telescope was currently turning into the AO telescope age. Sodium laser guide star(LGS) generated by laser exciting sodium atoms in the mesospheric layer at an altitude of about 90 km, as a beacon of AO correction, was the cutting-edge technology for the AO telescope. The theory, methods and development status of the sodium LGS were described in this paper. Especially in our lab, micro-second sodium LGS laser system suitable for efficient excitation of the sodium layer was developed with spectral format matched to the mesospheric D2 line. The sodium LGS laser system was successful to apply in some domestic and overseas large telescopes.
  • [1] Babcock H W. The possibility of compensating astronomical seeing[C]//Publications of the Astronomical Society of the Pacific, 1953, 65: 229-236.
    [2] Hardy J W. Proc. Inst. Elect. Electron. Engrs[C]//Control designs for an adaptive optics system, 1978, 66: 651-697.
    [3] Happer W, MacDonald G J, Max C E, et al. Atmospheric-turbulence compensating by resonant optical backscattering from the sodium layer in the upper atmosphere[J]. J Opt Soc Am A, 1994, 11: 263-276.
    [4] Belenkii M S, Karis S J, Brown J M. Experimental validation of a technique to measure tilt from a laser guide star [J]. Optics Letters, 1999, 24: 637-639.
    [5] Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy [J]. Nature (London), 1987, 328: 229-231.
    [6] Jelonek M P, Fugate R Q, Lange W J, et al. Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser [J]. J Opt Soc Am A, 1994, 11 (2): 806-812.
    [7] Max C E, Olivier S S, Friedman H W, et al. Image improvement from a sodium-layer laser guide star adaptive optics system[J]. Science, 1997, 277 (12): 1649-1652.
    [8] Viswa Velur, Edward J K, Richard G D, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test [C]//SPIE, Advancements in Adaptive Optics, 2004, 5490: 1033-1040.
    [9] Kuntschner, Harald. Operational concept of the VLT's adaptive optics facility and its instruments [C]//SPIE, 2012, 8448: 07-11.
    [10] Yutaka Hayanoa, Yoshihiko Saitoa, Meguru Itoa, et al. The laser guide star facility for subaru telescope [C]//SPIE, 2006, 6272: 627247-1-627247-7.
    [11] Allen K Hankla, Jarett Bartholomew, Ken Groff, et al. 20 W and 50 W solid-state sodium beacon guidestar laser systems for the Keck I and gemini south telescopes [C]//SPIE, 2006, 6272: 62721G-1-62721G-9.
    [12] Joyce R, Boyer C, Daggert L, et al. The laser guide star facility for the thirty meter telescope[C]//Advances in Adaptive Optics II, SPIE Proc, 2006, 6272: 1H1-1H6.
    [13] Pfrommer Thomas, Hickson Paul, She Chiaoyao. A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies[J]. Geophysical Research Letters, 2009, 36: 1-5.
    [14] Jian GeL, Jacobsena B P, Angel' J R P, et al. Simultaneous measurements of sodium column density and laser guide star brightness [C]//SPIE, 1998, 3353: 242-253.
    [15] Ungar P J, Weiss D S, Riis E, et al. Optical molasses and multilevel atoms: Theory[J]. J Opt Soc Am B, 1989, 6(11): 2058-2071.
    [16] Rochester Simon M, Otarola Angel, Boyer Corinne. Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project [J]. Journal of the Optical Society of America B-Optical Physics, 2012, 29(8): 2176-2188.
    [17] Avicola K, Brase J M, Morris J R, et al. Sodium-layer laser-guide-star experimental results[J]. J Opt Soc Am A, 1994, 11: 825-831.
    [18] Chester S Cardner, Byron M Welsh, Laird A Thompson. Design and performance analysis of adaptive optical telescopes using laser guide stars [C]//Proceedings of the IEEE, 1990, 78(11): 1721-1743.
    [19] Brent Ellerbroek, Corinne Boyer, Larry Daggert, et al. The TMT Laser Guide Star facility conceptual design report [Z]. TMT LGSF Team, TMT International Observatory, LLC, TMT.AOS.CDD.06.035.REL03, 2006, 25-25.
    [20] Peter L W, David L M, Antonin H B, et al. The W. M. keck observatory laser guide star adaptive optics system: overview[C]//Publications of the Astronomical Society of the Pacific, 2006, 118: 000-000.
    [21] Humphreys R A, Primmerman C A, Bradley L C, et al.Atmospheric-turbulence measurements using asynthetic beacon in the mesospheric sodium layer [J]. Opt Lett, 1991, 16: 1367-1369.
    [22] Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe [J]. Astron Astrophys, 1985, 152: 129-131.
    [23] Joshua C Bienfang, Craig A Denman, Brent W Grime, et al. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers [J]. Opt Lett, 2003, 28(22): 2219-2221.
    [24] Craig A D, Paul D H, Gerald T M, et al. 20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications[J]. Optical Materials, 2004, 26: 507-513.
    [25] Craig A Denmana, Paul D Hillmana, Gerald T Moorea, et al. Realization of a 50-Watt facility-class sodium guidestar pump laser [C]//SPIE, 2005, 5707: 46-49.
    [26] Cline d'Orgeville, Sarah Diggs, Vincent Fesquet, et al. Gemini south multi-conjugate adaptive optics (GeMS) laser guide star facility on-sky performance results[C]//SPIE, 2012, 8447: 84471Q-1-84471Q-21.
    [27] Hideki Takami, Stephen Colleya, Matt Dinkinsa, et al. Status of subaru laser guide star AO system[C]//SPIE, 2006, 6272: 62720C1-C10.
    [28] Yan Feng, Luke R Taylor, Domenico Bonaccini Calia. 25 W Raman -fiber -amplifier -based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21): 19021-19026.
    [29] Luke R Taylor, Yan Feng, Domenico Bonaccini Calia. 50 W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 2010, 18(8): 8540-8555.
    [30] Christina B Olausson, Akira Shirakawa, Hiroki Maurayama, et al. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources[C]//SPIE, 2010, 7580: 758013-1-758013-12.
    [31] Pennington D M, Dawson J W, Beach R J, et al. Compact fiber laser for 589 nm laser guide star generation [C]//CLEO Europe, 2005: 532-532.
    [32] Surin A A, Larin S V. 14 W SHG in MgO:sPPLT at 589 nm from high power CW linearly polarized RFL [C]//Laser Optics, International Conference, 2014: 1-1.
    [33] Dupriez P, Farrell C, Ibsen M, et al. 1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system[C]//SPIE, 2006, 6102: 61021G-1-61021G-6.
    [34] Jeys T H. Development of a mesospheric sodium laser beacons for adaptive optics[J]. The Lincoln Laboratory Journal, 1991, 4: 133-133.
    [35] Kibblewhite E J, Shi F. Design and field tests of an 8 W sum-frequency laser for adaptive optics[C]//SPIE, 1998, 3353: 300-319.
    [36] Viswa Velur, Edward J Kibblewhite, Richard G Dekany, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test[C]//SPIE, 2004, 5490: 1033-1040.
    [37] Jennifer E Roberts, Antonin H Bouchez, John Angione, et al. Facilitizing the palomar AO Laser Guide Star system [C]//SPIE, 2008, 7015: 70152S-1-10.
    [38] Xie S, Bo Yong, Xu J, et al. A 7.5 W quasi-continuous-wave sodium D2 laser generated from single-pass sum-frequency generation in LBO crystal[J]. Appl Phys B, 2011, 102: 781-787.
    [39] Xu Zuyan, Xie Shiyong, Bo Yong, et al. Investigation of 30 W-class second-generation sodium beacon laser[J]. Acta Optica Sinica, 2011, 31(9): 094208-1-094208-4. (in Chinese) 许祖彦, 谢仕永, 薄勇, 等。30 W级第二代钠信标激光器研究[J]. 光学学报, 2011, 31(9): 094208-1-094208-4.
    [40] Kai Wei, Yong Bo, Xianghui Xue, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[C]//SPIE, 2013, 8447: 84471R-1-84471R-7.
    [41] Angel Otarola. On-sky tests of the TIPC prototype laser results from tests held at the Lijiang observatory[Z]. TIPC Technical Review, TMT. AOS. PRE. 13.028. DRF01, 2013.
    [42] Otarola Angel, Hickson Paul, Bo Yong, et al. On-sky tests of a high-power pulsed-laser system for sodium laser guide star adaptive optics[J]. Journal of Astronomical Instrumentation, 2015: 22.
    [43] Lu Yanhua, Xie Gang, Pang Yu, et al. 340 mJ all solid state sodium beacon laser[J]. Chinese Journal of Lasers, 2012, 39(7): 0708004-7. (in Chinese) 鲁燕华, 谢刚, 庞毓, 等。340 mJ全固态钠信标激光器[J]. 中国激光, 2012, 39(7): 0708004-7.
    [44] Yan Hualu, Xie Gang, Zhang Lei, et al. High energy all solid state sodium beacon laser with line width of 0.6 GHz [J]. Appl Phys B, 2015, 118: 253-259.
    [45] Wang Feng, Chen Tianjiang, Luo Zhongxiang, et al. Experimental study on backscattering characteristics of sodium beacon based on a long pulse laser[J]. Acta Physica Sinica, 2014, 63(1): 014208-1-014208-6. (in Chinese) 王锋, 陈天江, 雒仲祥, 等。基于长脉冲光源的钠信标回光特性实验研究 [J]. 物理学报, 2014, 63(1): 014208-1-014208-6.
    [46] Liu Jie, Wang Jianli, Lv Tianyu, et al. All-solid-state 589 nm laser and the brightness of excited sodium guide star[J]. Optics and Precision Engineering, 2014, 22(12): 3199-3204. (in Chinese) 刘杰, 王建立, 吕天宇, 等. 全固态589nm激光器及其钠导星激发亮度[J]. 光学 精密工程, 2014, 22(12): 3199-3204.
    [47] Lei Zhang, Huawei Jiang, Shuzhen Cui, et al. Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier [C]//CLEO, 2014: 1-2.
    [48] Yuan Y, Zhang L, Liu Y, et al. Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal[J]. China-Technological Sciences, 2013, 56(1): 125-128.
    [49] Tan Wei, Fu Xiaofang, Li Zhixin, et al. The wavelength tunable 589 nm laser output based on singly resonant sum-frequency generation and the measurement of saturate fluorescence spectrum of sodium atom[J]. Acta Physica Sinica, 2013, 62(9): 094211-1-094211-6. (in Chinese) 谭巍, 付小芳, 李志新, 等. 基于单波长外腔共振和频技术产生波长可调谐589 nm 激光及钠原子饱和荧光谱的测量[J]. 物理学报, 2013, 62(9): 094211-1-094211-6.
    [50] Gao Z L, Liu S D, Liu J J, et al. Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm[J]. Optics Express, 2013, 21(6): 7821-7827.
    [51] Wang Yuning. Advances in all-solid-state yellow lasers at 589 nm[D]. Changchun: Changchun University of Science and Technology, 2012. (in Chinese) 王禹凝. 高功率全固态589nm黄光激光器的研究[D]. 长春: 长春理工大学, 2012.
    [52] Zhu Haiyong, Zhang Ge, Zhang Yaoju, et al. LD end-pumped c-cut Nd:YVO4 laser at 589 nm generated by sef-Raman conversion and frequency doubling[J]. Acta Physica Sinica, 2011, 60(9): 373-377. (in Chinese) 朱海永, 张戈, 张耀举, 等. LD端面抽运c切Nd:YVO4自拉曼倍频589 nm黄光激光研究[J]. 物理学报, 2011, 60(9): 373-377.
    [53] Li Lisha, Hou Yao, Chen Xiuyan, et al. Diode-side-pumped 589nm yellow laser with double acousto-optic Q-switche[J]. Laser Technology, 2009, 33(3): 273-275. (in Chinese) 李莉莎, 侯瑶, 陈秀艳, 等. 二极管侧面抽运双声光调Q 589 nm黄光激光器[J]. 激光技术, 2009, 33(3): 273-275.
    [54] Liang Xingbo, Yuan ligang, Jiang Dongsheng, et al. 10.5 W quasi continuous wave yellow laser at 589 nm[J]. Laser Infrared, 2008, 38(9): 876-878. (in Chinese) 梁兴波, 苑利钢, 姜东升, 等. 10.5 W准连续波589 nm黄光激光器[J]. 激光与红外, 2008, 38(9): 876-878.
    [55] Pique Jean-Paul, Ioana C Moldovan, Vincent Fesquet, et al. Polychromatic Laser Guide Star using a single laser at 330 nm [C]//SPIE, 2006, 6272: 62723D-1-62723D-10.
    [56] Brent Ellerbroek, Corinne Boyer, Larry Daggert, et al. The TMT Laser Guide Star facility conceptual design report[Z]. TMT LGSF Team, TMT International Observatory, LLC, TMT.AOS.CDD.06.035.REL03, 2006: 26-26.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(745) PDF downloads(579) Cited by()

Related
Proportional views

Progress on sodium laser guide star

doi: 10.3788/IRLA201645.0101001
  • 1. Research Center for Laser Physics and Technique,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China;
  • 2. The Key Laboratory on Adaptive Optics,Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu 610209,China;
  • 3. National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100012,China

Abstract: Astronomical telescope is always one of the vital tools that help human kind to unveil hidden natural laws in the universe. However, spatial resolution of the large ground-based telescope was severely limited because the turbulence of atmosphere degenerates the perfect wavefront from stars into an aberrated one, which was the key science and technology difficult problem to achieve high resolution astronomical observation. So adaptive optics(AO) was being pursuit by many teams internationally to correct the wavefront aberration and make large ground-based telescope resolving power to near diffraction limitation. It indicates that the ground-based optical telescope was currently turning into the AO telescope age. Sodium laser guide star(LGS) generated by laser exciting sodium atoms in the mesospheric layer at an altitude of about 90 km, as a beacon of AO correction, was the cutting-edge technology for the AO telescope. The theory, methods and development status of the sodium LGS were described in this paper. Especially in our lab, micro-second sodium LGS laser system suitable for efficient excitation of the sodium layer was developed with spectral format matched to the mesospheric D2 line. The sodium LGS laser system was successful to apply in some domestic and overseas large telescopes.

Reference (56)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return