Volume 45 Issue 4
May  2016
Turn off MathJax
Article Contents

Cao Zhaoliang, Mu Quanquan, Xu Huanyu, Zhang Peiguang, Yao Lishuang, Xuan Li. Open loop liquid crystal adaptive optics systems: progresses and results[J]. Infrared and Laser Engineering, 2016, 45(4): 402002-0402002(8). doi: 10.3788/IRLA201645.0402002
Citation: Cao Zhaoliang, Mu Quanquan, Xu Huanyu, Zhang Peiguang, Yao Lishuang, Xuan Li. Open loop liquid crystal adaptive optics systems: progresses and results[J]. Infrared and Laser Engineering, 2016, 45(4): 402002-0402002(8). doi: 10.3788/IRLA201645.0402002

Open loop liquid crystal adaptive optics systems: progresses and results

doi: 10.3788/IRLA201645.0402002
  • Received Date: 2015-08-09
  • Rev Recd Date: 2015-09-09
  • Publish Date: 2016-04-25
  • Liquid crystal wavefront corrector (LCWFC) is one of the most attractive wavefront correction devices for adaptive optics system. The main disadvantages for conventional nematic LCWFC are polarization dependence and narrow working waveband. A polarized beam splitter (PBS) based open loop optical design and an optimized energy splitting method was used to overcome these problems respectively. The results indicate that the open loop configuration is suitable for LCWFC and the novel energy splitting method can significantly improve the detection capability of the liquid crystal adaptive optics system.
  • [1] Cao Z, Mu Q, Hu L, et al. Correction of horizontal turbulence with nematic liquid crystal wavefront corrector[J]. Opt Express, 2008, 16:7006-7013.
    [2] Love G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Appl Opt, 1997, 36:1517-1524.
    [3] Restaino S, Dayton D, Browne S, et al. On the use of dual frequency nematic material for adaptive optics systems:first results of a closed-loop experiment[J]. Opt Express, 2000, 6:2-6.
    [4] Neil M A A, Booth M J, Wilson T. Dynamic wave-front generation for the characterization and testing of optical systems[J]. Optics Letters, 1998, 23:1849-1851.
    [5] Cao Z, Li X, Xuan L, et al. Recent progress in liquid crystal adaptive optics technique[J]. Chinese Optics, 2012, 5(1):12-19. (in Chinese)
    [6] Zheng X, Liu R, Xia M, et al. Retinal correction imaging system based on liquid crystal adaptive optics[J]. Chinese Optics, 2014, 7(1):98-104. (in Chinese)
    [7] Burns D C, Underwood I, Gourlay J, et al. A 256256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator[J]. Optics Communications, 1995, 119:623-632.
    [8] Peng Z, Liu Y, Cao Z, et al. Fast response property of low-viscosity difluorooxymethylene-bridged liquid crystals[J]. Liquid Crystals, 2013, 40(1):91-96.
    [9] Peng Z, Liu Y, Yao L, et al. Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap[J]. Optics Letters, 2011, 36(18):3608-3610.
    [10] Hu H, Hu L, Peng Z, et al. Advanced single-frame overdriving for liquid-crystal spatial light modulators[J]. Optics Letters, 2012, 37(16):3324-3326.
    [11] Love G D. Liquid crystal phase modulator for unpolarized light[J]. Appl Opt, 1993, 32(13):2222-2223.
    [12] Love G D, Restaino S R, Carreras R C, et al. Polarization insensitive 127-segment liquid crystal wavefront corrector[C]//OSA Summer Topical Meeting on Adaptive Optics, 1996.
    [13] Stockley J E, Sharp G D, Serati S A, et al. Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals[J]. Opt Lett, 1995, 20:2441-2443.
    [14] Gu Naiting, Yang Zeping, Huang Linhai, et al. Measurement method of misalignment for Hartmann-Shack sensor and deformable mirror in adaptive optics system[J]. Infrared and Laser Engineering, 2011, 40(2):287-292. (in Chinese)
    [15] Liu Ruixue, Zheng Xialiang, Xia Mingliang, et al. Accurate fixation of adaptive optics fundus imaging field of view based on visual target guidance[J]. Infrared and Laser Engineering, 2015, 44(6):1794-1799. (in Chinese)
    [16] Mu Quanquan, Cao Zhaoliang, Li Dayu, et al. Open-loop correction of horizontal turbulence:system design and result[J]. Applied Optics, 2008, 47(23):4297-4301.
    [17] Chen H, Xuan L, Hu L, et al. Optical design of miniaturization aberration correcting system for human eye[J]. Optics and Precision Engineering, 2010, 18:29-36. (in Chinese)
    [18] Cheng Shaoyuan, Cao Zhaoliang, Hu Lifa, et al. Design of open loop liquid crystal adaptive optical system for 1200 mm telescope[J]. Infrared and Laser Engineering, 2010, 39(2):288-291. (in Chinese)
    [19] Vogel C R, Yang Q. Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformable mirror[J]. J Opt Soc Am A, 2006, 23:1074-1081.
    [20] Blain C, Guyon O, Conan R, et al. Simple iterative method for open-loop control of MEMS deformable mirrors[C]//SPIE, 2008, 7015:701534.
    [21] Guzman D, Guesalaga A, Myers R, et al. Deformable mirror controller for open-loop adaptive optics[C]//SPIE, 2008, 7015:70153X.
    [22] Thibos L N, Bradley A. Use of liquid-crystal adaptive-optics to alter the refractive state of the eye[J]. Optometry and Vision Science, 1997, 74:581-587.
    [23] Cao Z, Xuan L, Hu L, et al. Investigation of optical testing with a phase-only liquid crystal spatial light modulator[J]. Opt Express, 2005, 13:1059-1065.
    [24] Mu Q, Cao Z, Hu L, et al. Novel spectral range expansion method for liquid crystal adaptive optics[J]. Optics Express, 2010, 18(21):21687-21696.
    [25] Laude V. Twisted nematic liquid-crystal pixelated active lens[J]. Optics Communications, 1998, 153:134-152.
    [26] Cao Z, Mu Q, Hu L, et al. Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system[J]. Opt Express, 2012, 20:19331-19342.
    [27] Xia M, Li C, Liu Z, et al. Adaptive threhold section method for Shack-Hartmann wavefront sensor[J]. Optics and Precision Engineering, 2010, 18:334-340. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(544) PDF downloads(176) Cited by()

Related
Proportional views

Open loop liquid crystal adaptive optics systems: progresses and results

doi: 10.3788/IRLA201645.0402002
  • 1. State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

Abstract: Liquid crystal wavefront corrector (LCWFC) is one of the most attractive wavefront correction devices for adaptive optics system. The main disadvantages for conventional nematic LCWFC are polarization dependence and narrow working waveband. A polarized beam splitter (PBS) based open loop optical design and an optimized energy splitting method was used to overcome these problems respectively. The results indicate that the open loop configuration is suitable for LCWFC and the novel energy splitting method can significantly improve the detection capability of the liquid crystal adaptive optics system.

Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return