Volume 45 Issue 7
Aug.  2016
Turn off MathJax
Article Contents

Lu Fang, Zhao Dan, Liu Chunbo, Han Xiang'e. Influence of non-Kolmogorov atmospheric turbulence on scintillation of Gaussian array beams[J]. Infrared and Laser Engineering, 2016, 45(7): 711001-0711001(6). doi: 10.3788/IRLA201645.0711001
Citation: Lu Fang, Zhao Dan, Liu Chunbo, Han Xiang'e. Influence of non-Kolmogorov atmospheric turbulence on scintillation of Gaussian array beams[J]. Infrared and Laser Engineering, 2016, 45(7): 711001-0711001(6). doi: 10.3788/IRLA201645.0711001

Influence of non-Kolmogorov atmospheric turbulence on scintillation of Gaussian array beams

doi: 10.3788/IRLA201645.0711001
  • Received Date: 2015-11-24
  • Rev Recd Date: 2015-12-27
  • Publish Date: 2016-07-25
  • The expression for the scintillation index of radial Gaussian array beams propagation in non-Kolmogorov turbulence was derived by using the extended Huygens-Fresnel principle and Rytov method. The influences of the ring radius r0, beam number N, general exponent and propagation distance L on the on-axis and off-axis scintillation index were studied. The results show that both the on-axis and off-axis scintillation index rise initially as becomes larger, but later the scintillation reduce as grows further. It is worth noting that beams with different r0 reach its maximum scintillation correspond to different . The scintillation index values of array beams are smaller than that of a Gaussian beam around the on-axis point, but with the increase of the transverse coordinate px the scintillation index values become larger than that of a Gaussian beam. Scintillation index decreases with the increase of N, but the dependence of scintillation on r0 is not monotonic.
  • [1] Cai Y, Chen Y, Eyyubo?lu H T, et al. Propagation of laser array beams in a turbulent atmosphere[J]. Appl Phys B, 2007, 88(3):467-475.
    [2] Li Changjin, Luo Yamei. Propagation properties of nonparaxial Hermite-Gaussian multiple radial array beams[J]. Infrared and Laser Engineering, 2013, 42(1):111-117. (in Chinese)黎昌金, 罗亚梅. 非傍轴厄米-高斯光束多重径向阵列光束的传输特性[J]. 红外与激光工程, 2013, 42(1):111-117.
    [3] Ji Xiaoling. Influence of atmospheric turbulence on the spreading and directionality of radial Gaussian array beams[J]. Acta Physica Sinica, 2010, 59(1):692-698. (in Chinese)季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响[J]. 物理学报, 2010, 59(1):692-698.
    [4] Eyyubo?lu H T, Baykal Y, Cai Y. Scintillations of laser array beams[J]. Appl Phys B, 2008, 91(2):265-271.
    [5] Tang Hua, Wang Baoqiang, Luo Bin, et al. Scintillation optimization of radial Gaussian beam array propagating through Kolmogorov turbulence[J]. Appl Phys B, 2013, 111(1):149-154.
    [6] Lu Fang, Han Xiang'e. Spatial coherence properties of GSM array beams in turbulent atmosphere[J]. Infrared and Laser Engineering, 2015, 44(1):305-309. (in Chinese)卢芳, 韩香娥. 高斯-谢尔模型阵列光束在湍流大气中的空间相干性[J]. 红外与激光工程, 2015, 44(1):305-309.
    [7] Ke Xizheng, Chen Juan, Pei Guoqiang. Multiple-beam transmission techniques for wireless laser communication[J]. Opto-Electronic Engineering, 2012, 39(7):1-7. (in Chinese)柯熙政, 谌娟, 裴国强. 无线激光通信中的多光束发射技术研究[J]. 光电工程, 2012, 39(7):1-7.
    [8] Ke Xizheng, Chen Juan, Zhang Nan. Iterative decoding algorithm in FSO MIMO communication system[J]. Infrared and Laser Engineering, 2014, 43(8):2631-2636. (in Chinese)柯熙政, 谌娟, 张楠. FSO MIMO系统中迭代译码算法的研究[J]. 红外与激光工程, 2014, 43(8):2631-2636.
    [9] Papanicolaou G C, Solna K, Washburn D C. Segmentation-independent estimates of turbulence parameters[C]//SPIE, 1998, 3381:256-267.
    [10] Toselli I, Andrews L C, Phillips R L, et al. Free space optical system performance for laser beam propagation through Non-Kolmogorov turbulence[J]. Opt Eng, 2008, 47(2):1-9.
    [11] Huang Yongping, Zhao Guangpu, Xiao Xi, et al. Effective radius of curvature of spatially partially coherent beams propagating through non-Kolmogorov turbulence[J]. Acta Phys Sin, 2012, 61(14):144202-1-6. (in Chinese)黄永平, 赵光普, 肖希, 等. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径[J]. 物理学报, 2012, 61(14):144202-1-6.
    [12] Eyyubo?lu H T. Scintillation behavior of cos, cosh and annular Gaussian beams in non-Kolmogorov turbulence[J]. Appl Phys B, 2012, 108(2):335-343.
    [13] Lu Lu, Ji Xiaoling, Deng Jinping, et al. A further study on the spreading and directionality of Gaussianarray beams in non-Kolmogorov turbulence[J]. Chin Phys B, 2014, 23(6):064209-1-8.
    [14] Lu Lu, Ji Xiaoling, Deng Jinping, et al. Influence of non-Kolmogorov turbulence on the spreading of Gaussian array beams[J]. Acta Phys Sin, 2014, 63(1):014207-1-6. (in Chinese)陆璐, 季小玲, 邓金平, 等. 非Kolmogorov大气湍流对高斯列阵光束扩展的影响[J]. 物理学报, 2014, 63(1):014207-1-6.
    [15] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series and Products[M]. New York:Academic, 2000.
    [16] Andrews L C, Philips R L. Laser Propagation Through Random Media[M]. Bellingham:SPIE Press, 2005.
    [17] Mei Haiping, Wu Xiaoqing, Rao Ruizhong. Measurement of inner and outer scale of atmospheric optical turbulence in different areas[J]. High Power Laser and Particle Beams, 2006, 18(3):362-366. (in Chinese)梅海平, 吴晓庆, 饶瑞中. 不同地区大气光学湍流内外尺度测量[J]. 强激光与粒子束, 2006, 18(3):362-366.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(462) PDF downloads(137) Cited by()

Related
Proportional views

Influence of non-Kolmogorov atmospheric turbulence on scintillation of Gaussian array beams

doi: 10.3788/IRLA201645.0711001
  • 1. School of Physics and Optoelectronic Engineering,Xidian University,Xi'an 710071,China

Abstract: The expression for the scintillation index of radial Gaussian array beams propagation in non-Kolmogorov turbulence was derived by using the extended Huygens-Fresnel principle and Rytov method. The influences of the ring radius r0, beam number N, general exponent and propagation distance L on the on-axis and off-axis scintillation index were studied. The results show that both the on-axis and off-axis scintillation index rise initially as becomes larger, but later the scintillation reduce as grows further. It is worth noting that beams with different r0 reach its maximum scintillation correspond to different . The scintillation index values of array beams are smaller than that of a Gaussian beam around the on-axis point, but with the increase of the transverse coordinate px the scintillation index values become larger than that of a Gaussian beam. Scintillation index decreases with the increase of N, but the dependence of scintillation on r0 is not monotonic.

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return