Volume 45 Issue 7
Aug.  2016
Turn off MathJax
Article Contents

Zhang Lisen, Xing Dong, Xu Peng, Liang Shixiong, Wang Junlong, Wang Yuangang, Yang Dabao, Feng Zhihong. 70 nm gate-length InAs PHEMTs with maximum oscillation frequency of 640 GHz[J]. Infrared and Laser Engineering, 2016, 45(7): 720004-0720004(5). doi: 10.3788/IRLA201645.0720004
Citation: Zhang Lisen, Xing Dong, Xu Peng, Liang Shixiong, Wang Junlong, Wang Yuangang, Yang Dabao, Feng Zhihong. 70 nm gate-length InAs PHEMTs with maximum oscillation frequency of 640 GHz[J]. Infrared and Laser Engineering, 2016, 45(7): 720004-0720004(5). doi: 10.3788/IRLA201645.0720004

70 nm gate-length InAs PHEMTs with maximum oscillation frequency of 640 GHz

doi: 10.3788/IRLA201645.0720004
  • Received Date: 2016-02-05
  • Rev Recd Date: 2016-03-07
  • Publish Date: 2016-07-25
  • Because of the high electron mobility and two-dimensional electron gas concentration, InP based pseudomorphic high electron mobility transistors(PHEMTs) become one of the most promising three-terminal devices which can operate in terahertz. The InAs composite channel was used to improve the operating frequency of the devices. The two-dimensional electron gas(2DEG) showed a mobility of 13000 cm2/(Vs) at room temperature. 70 nm gate-length InAs/In0.53Ga0.47As InP-based PHEMTs were successfully fabricated with two fingers 30 m total gate width and source-drain space of 2 m. The T-shaped gate with a stem height of 210 nm was fabricated to minimize parasitic capacitance. The fabricated devices exhibited a maximum drain current density of 1440 mA/mm(VGS=0.4 V) and a maximum transconductance of 2230 mS/mm. The current gain cutoff frequency fT and the maximum oscillation frequency fmax were 280 and 640 GHz, respectively. These performances make the device well-suited for millimeter wave or terahertz wave applications.
  • [1] Seung J O, Yong M H, Seungjoo H, et al. Medical application of THz imaging technique[C]//37th International Conference on Infrared, Millimeter, and Terahertz Waves, 2012:1-3.
    [2] Axel T. 220-GHz metamorphic HEMT amplifier MMICs for high-resolution imaging applications[J]. IEEE Journal of Solid-State Circuits, 2005, 40(10):2070-2076.
    [3] Radoslaw P, Thomas K O, Norman K, et al. Short-range ultra-broadband terahertz communications:concepts and perspectives[J]. IEEE Antennas and Propagation Magazine, 2007, 49(6):24-39.
    [4] Ho J S, Tadao N. Present and future of terahertz communications[J]. IEEE Trans TeraHz Sci Technol, 2011, 1(1):256-263.
    [5] Norbert P, Mieczyslaw S, Marcin K, et al. THz spectroscopy and imaging in security applications[C]//19th International Conference on Microwaves, Radar and Wireless Communications, 2012:265-270.
    [6] Hai B L, Hua Z, Nicholas K, et al. Terahertz spectroscopy and imaging for defense and security applications[J]. Proceedings of the IEEE, 2007, 95(8):1514-1527.
    [7] Lorene A S. An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1):9-24.
    [8] Dae H K, Jesus A A. 30-nm InAs PHEMTs with fT=644 GHz and fmax=681 GHz[J]. IEEE Electron Device Letters, 2010, 31(8):806-808.
    [9] Xiao B M, Wayne Y, Mike L, et al. First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process[J]. IEEE Electron Device Letters, 2015, 36(4):327-329.
    [10] Dae H K, Berinder B, Jesus A A. fT=688 GHz and fmax=800 GHz in Lg=40 nm In0.7Ga0.3As MHEMTs with gm_max2.7 mS/m[C]//IEEE International Electron Devices Meeting, 2011:319-322.
    [11] Dae H K, Jesus A A, Peter C, et al. 50-nm E-mode In0.7Ga0.3As PHEMTs on 100-mm InP substrate with fmax1 THz[C]//IEEE International Electron Devices Meeting, 2010:692-695.
    [12] Tae W K, Dae H K, Jesus A A. 60 nm self-aligned-gate InGaAs HEMTs with record high-frequency characteristics[C]//IEEE International Electron Devices Meeting, 2010:696-699.
    [13] William D, Xiao B M, Kevin M K H L, et al. THz monolithic integrated circuits using InP high electron mobility transistors[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1):25-32.
    [14] Mike B, Mike B, Xiao B M, et al. Advanced InP and GaAs HEMT MMIC technologies for MMW commercial products[C]//65th Annual Device Research Conference, 2007:147-148.
    [15] Leuther A, Axel T, Hermann M, et al. 450 GHz amplifier MMIC in 50 nm metamorphic HEMT technology[C]//International Conference on IPRM, 2012:229-232.
    [16] Axel T, Leuther A, Hermann M, et al. A high gain 600 GHz amplifier TMIC using 35 nm metamorphic HEMT technology[C]//IEEE CSICS, 2012:1-4.
    [17] Keisuke S, Wonill Ha, Maik J W R, et al. Extremely high gm2.2 S/mm and fT550 GHz in 30-nm enhancement-mode InP-HEMTs with Pt/Mo/Ti/Pt/Au buried gate[C]//IEEE 19th International Conference on IPRM, 2007:18-21.
    [18] Wonill Ha, Keisuke S, Griffith Z, et al. High performance InP HEMT technology with multiple interconnect layers for advanced RF and mixed signal circuits[C]//IEEE International Conference on IPRM, 2009:115-119.
    [19] Akira E, Issei W, Takashi M, et al. High-speed InP-HEMTs:low-noise performance and cryogenic operation[C]//23rd International Conference on IPRM, 2011:1-4.
    [20] Yoshimi Y, Akira E, Keisuke S, et al. Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs with an ultrahigh fT of 562 GHz[J]. IEEE Electron Device Letters, 2002, 23(10):573-575.
    [21] Tetsuya S, Haruki Y, Tetsuyoshi I, et al. 30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs[J]. IEEE Transactions on Electron Devices, 2002, 49(10):1694-1700.
    [22] Tetsuya S, Haruki Y, Yohtaro U, et al. High-performance 0.1m gate enhancement-mode InAlAs/InGaAs HEMT's using two-step recessed gate technology[J]. IEEE Transactions on Electron Devices, 1999, 46(6):1074-1080.
    [23] Seong J Y, Myonghwan P, JeHyuk C, et al. 610 GHz InAlAs/In0.75GaAs metamorphic HEMTs with an ultra-short 15 nm gate[C]//IEEE International Electron Devices Meeting, 2007:613-616.
    [24] Byeong O L, Mun K L, Tae J B, et al. 50-nm T-Gate InAlAs/InGaAs metamorphic HEMTs with low noise and high fT characteristics[J]. IEEE Electron Device Letters, 2007, 28(7):546-548.
    [25] Sung C K, Dan A, Byeong O L, et al. High performance 94-GHz single balanced mixer using 70-nm MHEMTs and surface micromachined technology[J]. IEEE Electron Device Letters, 2006, 27(1):28-30.
    [26] Elgaid K, McLelland H, Holland M, et al. 50-nm T-gate metamorphic GaAs HEMTs with fT of 440 GHz and noise figure of 0.7 dB at 26 GHz[J]. IEEE Electron Device Letters, 2005, 26(11):784-786.
    [27] Kang S Lee, Young S Kim, Yun K Hong, et al. 35-nm zigzag T-gate In0.52Al0.48As/In0.53Ga0.47As metamorphic GaAs HEMTs with an ultrahigh fmax of 520 GHz[J]. IEEE Electron Device Letters, 2007, 28(8):672-675.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(386) PDF downloads(182) Cited by()

Related
Proportional views

70 nm gate-length InAs PHEMTs with maximum oscillation frequency of 640 GHz

doi: 10.3788/IRLA201645.0720004
  • 1. National Key Laboratory of ASIC,Hebei Semiconductor Research Institute,Shijiazhuang 050051,China

Abstract: Because of the high electron mobility and two-dimensional electron gas concentration, InP based pseudomorphic high electron mobility transistors(PHEMTs) become one of the most promising three-terminal devices which can operate in terahertz. The InAs composite channel was used to improve the operating frequency of the devices. The two-dimensional electron gas(2DEG) showed a mobility of 13000 cm2/(Vs) at room temperature. 70 nm gate-length InAs/In0.53Ga0.47As InP-based PHEMTs were successfully fabricated with two fingers 30 m total gate width and source-drain space of 2 m. The T-shaped gate with a stem height of 210 nm was fabricated to minimize parasitic capacitance. The fabricated devices exhibited a maximum drain current density of 1440 mA/mm(VGS=0.4 V) and a maximum transconductance of 2230 mS/mm. The current gain cutoff frequency fT and the maximum oscillation frequency fmax were 280 and 640 GHz, respectively. These performances make the device well-suited for millimeter wave or terahertz wave applications.

Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return