Volume 45 Issue 11
Dec.  2016
Turn off MathJax
Article Contents

Wu Weihui, Xiao Dongming, Mao Xing. Automatic design and laser additive manufacturing of supe-light structure of metal part[J]. Infrared and Laser Engineering, 2016, 45(11): 1106009-1106009(8). doi: 10.3788/IRLA201645.1106009
Citation: Wu Weihui, Xiao Dongming, Mao Xing. Automatic design and laser additive manufacturing of supe-light structure of metal part[J]. Infrared and Laser Engineering, 2016, 45(11): 1106009-1106009(8). doi: 10.3788/IRLA201645.1106009

Automatic design and laser additive manufacturing of supe-light structure of metal part

doi: 10.3788/IRLA201645.1106009
  • Received Date: 2016-03-24
  • Rev Recd Date: 2016-04-27
  • Publish Date: 2016-11-25
  • In order to solve the problems when designing supe-light structure part such as needing complex design techniques, long design cycle, difficult to add skin if making it by additive manufacturing technology, based on selective laser melting technology, a method which can automatically add skinned supe-light structure to traditional metal part CAD model was put forward in this paper. Considering the selective laser melting process characteristics, through an algorithm, a skinned supe-light quas-honeycomb structure part model with a preset porosity can be automatically designed by transforming an original CAD model. And the new part model data format can direct drive a selective laser melting machine for additive manufacturing without any data format transformation. The construction and design method of the skinned supe-light structure of metal part were studied. Through process analysis, appropriate processing unit length and reasonable skin tissue of supe-light structure metal part were gotten. The above method was tested successfully on a part model with complex shape in a selective laser melting experiment. The error of porosity is 2.79%, which means that this method can accurately reduce part mass according to preset porosity value. Therefore, in this way, skinned supe-light structure part can be design automatically and quickly based on an original CAD model without supe-light structure, the burden to design this kind of parts will be greatly reduced, and the practicability of the parts made through this method will be improved greatly.
  • [1] Yan Jun. Multiscale analysis and concurrent optimization for ultra-light metal structures and materials[D]. Dalian:Dalian University of Technology, 2007:1-5. (in Chinese)阎军. 超轻金属结构与材料性能多尺度分析与协同优化设计[D]. 大连:大连理工大学, 2007:1-5.
    [2] Yang Yongqiang, Wu Weihui. Manufacturing changes design-3D printing direct manufacturing technology[M]. Beijing:China Science and Technology Press, 2014:20-21. (in Chinese)杨永强, 吴伟辉. 制造改变设计-3D打印直接制造技术[M]. 北京:中国科学技术出版社, 2014:20-108.
    [3] Wehmoller M, Warnke T P H. Implant design and production a new approach by selective laser melting[J]. International Congress Series, 2005, 12(81):690-695.
    [4] Rehme O, Emmelmann C. Rapid manufacturing of lattice structures with selective laser melting[C]//Proceedings of SPIE, Laser-based Micropackaging, 2006:1-12.
    [5] Yadroitsev I, Shishkovsky I, Bertrand P, et al. Manufacturing of fine-structured 3D porous filter elements by selective laser melting[J]. Applied Surface Science, 2009, 255(10):5523-5527.
    [6] Van Bael S, Kerckhofs G, Moesen M, et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6A14V porous structures[J]. Materials Science and Engineering A, 2011, 528(24):7423-7431.
    [7] Sun Jianfeng. Research on fabrication and forming mechanism of controllable porous structure of ti6a14v based on selective laser melting[D]. Guangzhou:South China University of Technology, 2013:70-78. (in Chinese)孙健峰. 激光选区熔化Ti6Al4V可控多孔结构制备及机理研究[D]. 广州:华南理工大学, 2013:70-78.
    [8] Smith M, Guan Z, Cantwell W J. Finite element modeling of the compressive response of lattice structures manufactured using the selective laser melting technique[J]. International Journal of Mechanical Sciences, 2013, 67(10):28-41.
    [9] Xiao Dongming. Modeling of porous structure of implants and direct manufacturing by selective laser melting[D]. Guangzhou:South China University of Technology, 2013:30-45. (in Chinese)肖冬明. 面向植入体的多孔结构建模及激光选区熔化直接制造研究[D]. 广州:华南理工大学, 2013:30-45.
    [10] Lorna J. Gibson, Michael F. Ashby. Cellular solids:structure and properties[M]. 2nd ed. Cambridge:Cambridge University Press, 1999:20-47.
    [11] Zhang Sheng. Research on the forming processes and properties in selective laser melting of medical alloy powders[D]. Wuhan:Huazhong University of Science and Technology:90-100. (in Chinese)张升. 医用合金粉末激光选区熔化成形工艺与性能研究[D]. 武汉:华中科技大学, 2014:90-100.
    [12] Wu Weihui, Yang Yongqiang, He Xingrong, et al. All--digital rapid design and manufacture of metal customized surgical guide plate[J]. Opt Precision Eng, 2010, 18(5):1135-1143. (in Chinese)吴伟辉, 杨永强, 何兴容, 等. 金属质个性化手术模板的全数字化快速设计及制造[J]. 光学精密工程, 2010, 18(5):1135-1143.
    [13] Wang Di, Liu Ruicheng, Yang Yongqiang. Clearance design and process optimization of non-assembly mechanisms fabricated by selective laser melting[J]. Chinese J Lasers, 2014, 41(2):0203004. (in Chinese)王迪, 刘睿诚, 杨永强. 激光选区熔化成型免组装机构间隙设计及工艺优化[J]. 中国激光, 2014, 41(2):0203004.
    [14] Kruth J P, Deckers J, Yasa E. Experimental investigation of laser surface remelting for the improvement of selective laser melting process[C]//14th European Forum on Rapid Prototyping, 2009:321-332.
    [15] Yasa E, Kruth J P. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 2011, 19(11):389-395.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(390) PDF downloads(211) Cited by()

Related
Proportional views

Automatic design and laser additive manufacturing of supe-light structure of metal part

doi: 10.3788/IRLA201645.1106009
  • 1. School of Physics and Mechanical & Electrical Engineering,Shaoguan University,Shaoguan 512005,China;
  • 2. Engineering Research Center of Advanced Mine Equipment,Ministry of Education,Hunan University of Science and Technology,Xiangtan 411201,China

Abstract: In order to solve the problems when designing supe-light structure part such as needing complex design techniques, long design cycle, difficult to add skin if making it by additive manufacturing technology, based on selective laser melting technology, a method which can automatically add skinned supe-light structure to traditional metal part CAD model was put forward in this paper. Considering the selective laser melting process characteristics, through an algorithm, a skinned supe-light quas-honeycomb structure part model with a preset porosity can be automatically designed by transforming an original CAD model. And the new part model data format can direct drive a selective laser melting machine for additive manufacturing without any data format transformation. The construction and design method of the skinned supe-light structure of metal part were studied. Through process analysis, appropriate processing unit length and reasonable skin tissue of supe-light structure metal part were gotten. The above method was tested successfully on a part model with complex shape in a selective laser melting experiment. The error of porosity is 2.79%, which means that this method can accurately reduce part mass according to preset porosity value. Therefore, in this way, skinned supe-light structure part can be design automatically and quickly based on an original CAD model without supe-light structure, the burden to design this kind of parts will be greatly reduced, and the practicability of the parts made through this method will be improved greatly.

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return