Volume 45 Issue 11
Dec.  2016
Turn off MathJax
Article Contents

Ye Song, Gan Yongying, Xiong Wei, Zhang Wentao, Wang Jiejun, Wang Xinqiang. Baseline correction of spatial heterodyne spectrometer using wavelet transform[J]. Infrared and Laser Engineering, 2016, 45(11): 1117009-1117009(5). doi: 10.3788/IRLA201645.1117009
Citation: Ye Song, Gan Yongying, Xiong Wei, Zhang Wentao, Wang Jiejun, Wang Xinqiang. Baseline correction of spatial heterodyne spectrometer using wavelet transform[J]. Infrared and Laser Engineering, 2016, 45(11): 1117009-1117009(5). doi: 10.3788/IRLA201645.1117009

Baseline correction of spatial heterodyne spectrometer using wavelet transform

doi: 10.3788/IRLA201645.1117009
  • Received Date: 2016-03-05
  • Rev Recd Date: 2016-04-15
  • Publish Date: 2016-11-25
  • Spatial heterodyne spectroscopy (SHS) is a new spectroscopic technique which applies to astrometry and atmospheric remote sensing. A method of using wavelet transform to correct the baseline was proposed to eliminate the baseline drift during its application. Through the analysis of the influences of the different wavelet functions and decomposition layers on the results of baseline correction, the original spectrum was decomposed by wavelet transforms to get detail coefficients and approximate coefficients, and set the approximate coefficients to zero, the spectrum was reconstituted to realize the baseline correction. In the end, the results were compared with the results of the threshold fitting correction. The results show that the correlation coefficient of the two methods is 0.999 9 and the results are consistent, but the method of wavelet transform is more than ten times the time of the procedure. It is proved that using wavelet transform to carry out the baseline correction of spatial heterodyne interferometry is an effective, time saving and convenient method.
  • [1] Harlander J, Roesler F, Cardon J, et al. Shimmer:a spatial heterodyne spectrometer for remote sensing of Earth's middle atmosphere.[J]. Applied Optics, 2002, 41(7):1343-1352.
    [2] James E Lawler, Zac E Labby, John M Harlander, et al. Broadband, high-resolution spatial heterodyne spectrometer[J]. Applied Optics, 2008, 47(34):6371-6384.
    [3] Shi Hailiang, Fang Yonghua, Xiong Wei, et al. Spatial heterodyne spectroscopy and application in atmospheric remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2010, 5(6):463-468. (in Chinese)施海亮, 方勇华, 熊伟, 等. 空间外差光谱技术及其在大气遥感探测中的应用[J]. 大气与环境光学学报, 2010, 5(6):463-468.
    [4] Xiong Wei, Shi Hailiang, Wang Yuanjun, et al. Study on near-infrared spatial heterodyne spectrometer and detection of water vapor[J]. Acta Optica Sinica, 2010, 30(5):1511-1515. (in Chinese)熊伟, 施海亮, 汪元钧, 等. 近红外空间外差光谱仪及水汽探测研究[J]. 光学学报, 2010, 30(5):1511-1515.
    [5] Ye Song, Fang Yonghua, Hong Jin, et al. Development and application of spatial heterodyne spectroscopy[J]. Chinese Journal of Scientific Instrument, 2006, 27(S1):983-985. (in Chinese)叶松, 方勇华, 洪津, 等. 空间外差光谱技术的发展与应用[J]. 仪器仪表学报, 2006, 27(S1):983-985.
    [6] Lan Tiange, Fang Yonghua. New method of preprocessing infrared spectral signals[J]. Infrared and Laser Engineering, 2007, 36(2):257-260. (in Chinese)兰天鸽, 方勇华. 红外光谱信号预处理的新方法[J]. 红外与激光工程, 2007, 36(2):257-260.
    [7] Wang Xinqiang, Ye Song, Zhang Lijuan, et al. Study on phase correction method of spatial heterodyne spectrometer[J]. Spectroscopy and Spectral Analysis, 2013, 33(5):1424-1428. (in Chinese)王新强, 叶松, 张丽娟, 等. 空间外差光谱仪相位校正方法的研究[J]. 光谱学与光谱分析, 2013, 33(5):1424-1428.
    [8] Ye Song, Xiong Wei, Qiao Yanli, et al. Data processing for interferogram of heterodyne spectrometer[J]. Spectroscopy and Spectral Analysis, 2009, 29(3):848-852. (in Chinese)叶松, 熊伟, 乔延利, 等. 空间外差光谱仪干涉图数据处理[J]. 光谱学与光谱分析, 2009, 29(3):848-852.
    [9] Liang Dong, Yang Qinying, Huang Wenjiang, et al. Estimation of leaf area index based on wavelet transform and support vector machine regression in winter wheat[J]. Infrared and Laser Engineering, 2015, 44(1):335-340. (in Chinese)梁栋, 杨勤英, 黄文江, 等. 基于小波变换与支持向量机回归的冬小麦叶面积指数估算[J]. 红外与激光工程, 2015, 44(1):335-340.
    [10] Li Qingbo, Xu Yupo, Li Xiang, et al. Study on a modified baseline correction method based on wavelet transform[J]. Journal of OptoelectronicsLaser, 2009, 20(5):698-701. (in Chinese)李庆波, 徐玉坡, 李响, 等. 一种改进的小波基线校正方法的研究[J]. 光电子激光, 2009, 20(5):698-701.
    [11] Hu Yaogai, Zhao Zhengyu, Wang Gang. Baseline correction and background elimination using wavelet transforms[J]. J Huangzhong Univ of Sci Tech, 2011, 39(6):36-40. (in Chinese)胡耀垓, 赵正予, 王刚. 基于小波的光谱信号基线校正和背景扣除[J]. 华中科技大学学报, 2011, 39(6):36-40.
    [12] Guo Yuan, Zhao Xuehong, Zhang Rui, et al. The noise filtering and baseline correction for harmonic spectrum based on wavelet transform[J]. Spectroscopy and Spectral Analysis, 2013, 33(8):2172-2176. (in Chinese)郭媛, 赵学玒, 张锐, 等. 小波变换应用于谐波谱线的噪声滤除与基线校正[J]. 光谱学与光谱分析, 2013, 33(8):2172-2176.
    [13] Wang Xinqiang, Ye Song, Xiong Wei, et al. Calibration of fundamental frequency wavelength of spatial heterodyne spectrometer[J]. High Power Laser and Particle Beams, 2013, 25(4):827-831. (in Chinese)王新强, 叶松, 熊伟, 等. 空间外差光谱仪基频波长的定标[J]. 强激光与粒子束, 2013, 25(4):827-831.
    [14] Zhang Minjuan, Wang Zhibin, Li Xiao, et al. The stability and measuring technology of the maximum optical path difference of photo-elastic modulator interferograms[J]. Spectroscopy and Spectral Analysis, 2015, 35(5):1436-1439. (in Chinese)张敏娟, 王志斌, 李晓, 等. 弹光调制干涉图最大光程差的稳定性及检测技术研究[J]. 光谱学与光谱分析, 2015, 35(5):1436-1439.
    [15] Yin Shimin, Xiang Libin, Zhou Jinsong, et al. Real-time data processing of interferential maging spectrometer based on FPGA[J]. Journal of Infrared and Millimeter Waves, 2007, 26(4):274-278. (in Chinese)殷世民, 相里斌, 周锦松, 等. 基于FPGA的干涉式成像光谱仪实时数据系统研究[J]. 红外与毫米波学报, 2007, 26(4):274-278.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(423) PDF downloads(131) Cited by()

Related
Proportional views

Baseline correction of spatial heterodyne spectrometer using wavelet transform

doi: 10.3788/IRLA201645.1117009
  • 1. Department of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China;
  • 2. Key Laboratory of Optical Calibration and Characterization,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China;
  • 3. Key Laboratory of Optoelectronic Information Processing,Guangxi Colleges and Universities,Guilin 541004,China

Abstract: Spatial heterodyne spectroscopy (SHS) is a new spectroscopic technique which applies to astrometry and atmospheric remote sensing. A method of using wavelet transform to correct the baseline was proposed to eliminate the baseline drift during its application. Through the analysis of the influences of the different wavelet functions and decomposition layers on the results of baseline correction, the original spectrum was decomposed by wavelet transforms to get detail coefficients and approximate coefficients, and set the approximate coefficients to zero, the spectrum was reconstituted to realize the baseline correction. In the end, the results were compared with the results of the threshold fitting correction. The results show that the correlation coefficient of the two methods is 0.999 9 and the results are consistent, but the method of wavelet transform is more than ten times the time of the procedure. It is proved that using wavelet transform to carry out the baseline correction of spatial heterodyne interferometry is an effective, time saving and convenient method.

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return