Volume 45 Issue 11
Dec.  2016
Turn off MathJax
Article Contents

Li Daojing, Du Jianbo, Ma Meng, Hu Xuan, Qiao Ming. System analysis of spaceborne synthetic aperture ladar[J]. Infrared and Laser Engineering, 2016, 45(11): 1130002-1130002(8). doi: 10.3788/IRLA201645.1130002
Citation: Li Daojing, Du Jianbo, Ma Meng, Hu Xuan, Qiao Ming. System analysis of spaceborne synthetic aperture ladar[J]. Infrared and Laser Engineering, 2016, 45(11): 1130002-1130002(8). doi: 10.3788/IRLA201645.1130002

System analysis of spaceborne synthetic aperture ladar

doi: 10.3788/IRLA201645.1130002
  • Received Date: 2016-03-08
  • Rev Recd Date: 2016-04-14
  • Publish Date: 2016-11-25
  • Research status of synthetic aperture ladar (SAL) at home and abroad was introduced. Technical system, working mode and optical system characteristics were discussed. The system scheme of spaceborne SAL for space target observation was presented, and its performance and key technology were analyzed. The result shows spaceborne SAL can achieve high-resolution imaging of remote space target with high data rate and large squint angle.
  • [1] Gschwendtner A B, Keicher W E. Development of coherent laser radar at lincoln laboratory[J]. Lincoln Laboratory Journal, 2000, 12(2):383-394.
    [2] Dierking M, Schumm B, Ricklin J C, et al. Synthetic aperture LADAR for tactical imaging overview[C]//The 14th Coherent Laser Radar Conference(CLRC), 2007.
    [3] Krause B W, Buck J, Ryan C, et al. Synthetic aperture ladar flight demonstration[C]//Optical Society of America/Conference on Lasers and Electro-optics (OSA/CLEO), 2011.
    [4] Crouch S C. Synthetic Aperture Ladar Techniques[D]. US:Motana State University, 2012.
    [5] Crouch S, Barber Z W. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques[J]. Optics Express, 2012, 20(22):24237-24246.
    [6] Guo L, Xing M D, Zhang L, et al. Research on indoor experimentation of range SAL imaging system[J]. Science in China Series E:Technological Sciences, 2009, 52(10):3098-3104.
    [7] Xing Mengdao, Guo Liang, Tang Yu, et al. Design on the experiment optical system of synthetic aperture imaging lidar[J]. Infrared and Laser Engineering, 2009, 38(2):290-294. (in Chinese)邢孟道, 郭亮, 唐禹, 等. 合成孔径激光成像雷达实验系统设计[J]. 红外与激光工程, 2009, 38(2):290-294.
    [8] Liu Liren, Zhou Yu, Zhi Yanan, et al. A large-aperture synthetic aperture imaging ladar demonstrator and its verification in laboratory space[J]. Acta Optica Sinica, 2011, 31(9):112-116. (in Chinese)刘立人, 周煜, 职亚楠, 等. 大口径合成孔径激光成像雷达演示样机及其实验验证[J]. 光学学报, 2011, 31(9):112-116.
    [9] Liu L R. Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations[J]. Applied Optics, 2013, 52(4):579-599.
    [10] Wu Jin. On the development of synthetic aperture ladar imaging[J]. Journal of Radars, 2012, 1(4):353-360. (in Chinese)吴谨. 关于合成孔径激光雷达成像研究[J]. 雷达学报, 2012, 1(4):353-360.
    [11] Hong Guanglie, Wang Jianyu, Meng Zhaohua, et al. Chirped amplitude modulation and range dimension processing of near infrared synthetic aperture ladar[J]. Journal of Infrared and Millimeter Waves, 2009, 28(3):229-234. (in Chinese)洪光烈, 王建宇, 孟昭华, 等. Chirp强度调制与近红外激光合成孔径雷达距离向处理[J]. 红外与毫米波学报, 2009, 28(3):229-234.
    [12] Ruan Hang, Wu Yanhong, Zhang Shuxian. Geostationary orbital object imaging based on spaceborne inverse synthetic aperture ladar[J]. Infrared and Laser Engineering, 2013, 42(6):1611-1616. (in Chinese)阮航, 吴彦鸿, 张书仙. 基于天基逆合成孔径激光雷达的静止轨道目标成像[J]. 红外与激光工程, 2013, 42(6):1611-1616.
    [13] Li Daojing, Du Jianbo, Ma Meng. The research status and the space-based application prospect of the synthetic aperture ladar[C]//The Future Development and Application of Space Technology Academic Conference, 2014:18-20. 李道京, 杜剑波, 马萌. 合成孔径激光雷达的研究现状与天基应用展望[C]//钱学森实验室首届空间技术未来发展及应用学术会, 2014:18-20.
    [14] Li Jinming, Hu Yihua, Wang Enhong, et al. Imaging of satellite-to-satellite synthetic aperture lidar[J]. Infrared and Laser Engineering, 2011, 40(9):1668-1672. (in Chinese)李今明, 胡以华, 王恩宏, 等. 星对星合成孔径激光雷达成像[J]. 红外与激光工程, 2011, 40(9):1668-1672.
    [15] Marchese L, Doucet M, Bourqui P, et al. A global review of optronic synthetic aperture radar/ladar processing[C]//SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2013, 8714:871416-871416-10.
    [16] Sun Z W, Hou P P, Zhi Y N, et al. Optical image processing for synthetic-aperture imaging ladar based on two-dimensional Fourier transform[J]. Applied Optics, 2014, 53(9):1846.
    [17] Bourqui P, Harnisch B, Marchese L, et al. Optical SAR processor for space application[C]//SPIE, 2008, 6958:69580J.
    [18] Li Daojing, Zhang Qingjuan, Liu Bo, et al. Key technology and implementation scheme analysis of air-borne synthetic aperture ladar[J]. Journal of Radars, 2013, 2(2):143-151. (in Chinese)李道京, 张清娟, 刘波, 等. 机载合成孔径激光雷达关键技术和实现方案分析[J]. 雷达学报, 2013, 2(2):143-151.
    [19] Li Tonghai, Wang Haixia, Zhao Xinliang, et al. Design of the telecentric beam path aerial digital camera lens[J]. Opto-Electronic Engineering, 2011, 38(3):25-28. (in Chinese)李同海, 王海霞, 赵新亮, 等. 像方远心航拍数码相机镜头设计[J]. 光电工程, 2011, 38(3):25-28.
    [20] Li Daojing, Liu Bo, Yin Jianfeng, et al. Analysis and design of spaceborne MMW radar for space debris observation system[J]. Journal of Astronautics, 2010, 31(12):2746-2753. (in Chinese)李道京, 刘波, 尹建凤, 等. 天基毫米波空间碎片观测雷达系统分析与设计[J]. 宇航学报, 2010, 31(12):2746-2753.
    [21] Lin Z C, Liu K, Zhang W. Inertially stabilized platform for airborne remote sensing using magnetic bearings[J]. IEEE/ASME Transactions on Mechatronics, 2015, 99:1.
    [22] Du Jianbo, Li Daojing, Ma Meng. Research on wideband signal generation for ladar[J]. Chinese Journal of Lasers, 2015, 42(11):1114003. (in Chinese)杜剑波, 李道京, 马萌. 激光雷达宽带信号产生方法研究[J]. 中国激光, 2015, 42(11):1114003.
    [23] Gao S, Hui R. Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection[J]. Optics Letters, 2012, 37(11):2022-2024.
    [24] Du Jianbo, Li Daojing, Ma Meng. Performance analysis and image processing of phase-modulated signal on airborne synthetic aperture ladar[J]. Journal of Radars, 2014, 3(1):111-118. (in Chinese)杜剑波, 李道京, 马萌. 机载合成孔径激光雷达相位调制信号性能分析和成像处理[J]. 雷达学报, 2014, 3(1):111-118.
    [25] Zhan Xueli, Wang Yanfei, Wang Chao, et al. A digital dechirp approach for synthetic aperture radar[J]. Journal of Radars, 2015, 4(4):474-480. (in Chinese)詹学丽, 王岩飞, 王超, 等. 一种用于合成孔径雷达的数字去斜方法[J]. 雷达学报, 2015, 4(4):474-480.
    [26] Li Daojing, Liu Bo, Yin Jianfeng, et al. High Resolution Radar Moving Target Imaging Detection Technology[M]. Beijing:National Defense Industry Press, 2014. (in Chinese)李道京, 刘波, 尹建凤, 等. 高分辨率雷达运动目标成像探测技术[M]. 北京:国防工业出版社, 2014.
    [27] Barber Z W, Dahl J R. Experimental Demonstration of differential synthetic aperture ladar[C]//CLEO:Science and Innovations. Optical Society of America, 2015:STh3O.3.
    [28] Ma Meng, Li Daojing, Du Jianbo. Imaging of airborne synthetic aperture ladar under platform vibration condition[J]. Journal of Radars, 2014, 3(5):591-602. (in Chinese)马萌, 李道京, 杜剑波. 振动条件下机载合成孔径激光雷达成像处理[J]. 雷达学报, 2014, 3(5):591-602.
    [29] Ruan Hang, Wu Yanhong, Ye Wei, et al. Algorithm of phase error compensation for inverse synthetic aperture ladar[J]. Laser Optoelectronics Progress, 2013, 50(10):178-185. (in Chinese)阮航, 吴彦鸿, 叶伟, 等. 逆合成孔径激光雷达相位误差补偿算法[J]. 激光与光电子学进展, 2013, 50(10):178-185.
    [30] McManamon P F. Review of ladar:a historic, yet emerging, sensor technology with rich phenomenology[J]. Optical Engineering, 2012, 51(6):060901.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(428) PDF downloads(247) Cited by()

Related
Proportional views

System analysis of spaceborne synthetic aperture ladar

doi: 10.3788/IRLA201645.1130002
  • 1. Science and Technology on Microwave Imaging Laboratory,Institute of Electronics,Chinese Academy of Sciences,Beijing 100190,China;
  • 2. University of Chinese Academy of Sciences,Beijing 100049,China

Abstract: Research status of synthetic aperture ladar (SAL) at home and abroad was introduced. Technical system, working mode and optical system characteristics were discussed. The system scheme of spaceborne SAL for space target observation was presented, and its performance and key technology were analyzed. The result shows spaceborne SAL can achieve high-resolution imaging of remote space target with high data rate and large squint angle.

Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return