Volume 46 Issue 3
Apr.  2017
Turn off MathJax
Article Contents

Zhang Fang, Gao Jiaobo, Wang Nan, Zhao Yujie, Wu Jianghui, Zheng Yawei. LWIR imaging spectrometer employing a variable gap Fabry-Perot interferometer[J]. Infrared and Laser Engineering, 2017, 46(3): 318001-0318001(7). doi: 10.3788/IRLA201746.0318001
Citation: Zhang Fang, Gao Jiaobo, Wang Nan, Zhao Yujie, Wu Jianghui, Zheng Yawei. LWIR imaging spectrometer employing a variable gap Fabry-Perot interferometer[J]. Infrared and Laser Engineering, 2017, 46(3): 318001-0318001(7). doi: 10.3788/IRLA201746.0318001

LWIR imaging spectrometer employing a variable gap Fabry-Perot interferometer

doi: 10.3788/IRLA201746.0318001
  • Received Date: 2016-07-10
  • Rev Recd Date: 2016-08-20
  • Publish Date: 2017-03-25
  • With unique working principle and spectral characteristic, the long wave infrared (LWIR) interferometric spectral imaging is a popular technology with wide application in many fields. In order to miniaturize and light the instrument, a new method of LWIR spectral imaging system based on a variable gap Fabry-Perot (F-P) interferometer was researched. With the system working principle analyzed, theoretically, it was researched that how to make certain the primary parameters, such as, the reflectivity of the two interferometric cavity surface and the wedge angle of interferometric cavity. A prototype was developed and good experimental results of blackbody and polypropylene film were obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.
  • [1] Ding Na, Gao Jiaobo, Wang Jun, et al. Camouflaged target recognition realized by AOTF multispectral imaging system[J]. Journal of Applied Optics, 2010, 31(1):66-69. (in Chinese)丁娜, 高教波, 王军, 等. 利用AOTF多光谱成像系统实现伪装目标的识别[J]. 应用光学, 2010, 31(1):66-69.
    [2] Yarbrough S, Caudill T, Kouba M E, et al. Mighty Sat Ⅱ. hyperspectral imager:summary of on-orbit performance[C]//Proceedings of SPIE, 2002, 4480:186-197.
    [3] Lucey Paul G, Keith Horton, Tim Williams, et al. High-performance Sagnac interferometer using uncooled detectors for infrared hyperspectral imaging[C]//Proceedings of SPIE,2007, 6560:65650S.
    [4] Dong Ying, Xiangli Bin, Zhao Baochang. Lateral shearing interferometer in large aperture static imaging spectrometer[J]. Acta Photonica Sinica, 1999, 28(11):991-995. (in Chinese)董瑛, 相里斌, 赵葆常. 大孔径静态干涉成像光谱仪中的横向剪切干涉仪[J]. 光子学报,1999, 28(11):991-995.
    [5] Li Jie, Zhu Jingping, Zhang Yunyao, et al. Spectral zooming birefringent imaging spectrometer[J]. Acta Physica Sinica, 2013, 62(2):024205. (in Chinese)李杰, 朱京平, 张云尧, 等. 光谱分辨率可调的新型干涉成像光谱技术研究[J]. 物理学报, 2013, 62(2):024205.
    [6] Meng Hemin, Gao Jiaobo, Xiao Xiangguo, et al. Design and validation of infrared interferential imaging spectrometer with high flux[J]. Infrared and Laser Engineering, 2012, 41(11):2093-2098. (in Chinese)孟合民, 高教波, 肖相国, 等. 红外高通量干涉成像光谱仪的设计与验证[J]. 红外与激光工程, 2012, 41(11):2093-2098.
    [7] Heikki Saari, Ville Veikko Aallos, Altti Akujrvi, et al. Novel miniaturized hyperspectral sensor for UAV and space application[C]//Proceedings of SPIE, 2009, 7474:74741M.
    [8] Born M, Wolf E. Principles of Optics[M]. Beijing:Electronic Industry Press, 2009:324-333. (in Chinese)玻恩, 沃尔夫光学原理[M]. 北京:电子工业出版社, 2009:324-333.
    [9] Kajava T T, Lauranto H M, Friberg A T. Interference pattern of the Fizeau interferometer[J]. JOSA A, 1994, 11(7):2045-2054.
    [10] Gillard F, Ferrec Y, Guerineau N, et al. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer[J]. JOSA A, 2012, 29(6):936-944.
    [11] Yuan Liyin, Lin Ying, He Zhiping, et al. Design and realization of an long -wave infrared hyperspectral imaging system[J]. Infrared and Laser Engineering, 2011, 40(2):181-185. (in Chinese)袁立银, 林颖, 何志平, 等. 长波红外高光谱成像系统的设计与实现[J]. 红外与激光工程, 2011, 40(2):181-185.
    [12] Li Suning, Zhu Rihong, Li Jianxin, et al. Method of reconstruction on Fourier-Transform spectroscopy[J]. Journal of Applied Optics, 2009, 30(2):268-272. (in Chinese)李苏宁,朱日宏,李建欣,等. 傅里叶干涉成像光谱技术中的重构方法[J]. 应用光学, 2009, 30(2):268-272.
    [13] Lin Ying, Xu Weiming, Yuan Liyin, et al. Nonuniformity correction for LW infrared hyperspectral and its spectral feature abstraction[J]. Infrared and Laser Engineering, 2011, 40(4):605-610. (in Chinese)林颖, 徐卫明, 袁立银, 等. 长波红外高光谱非均匀性校正及光谱特征提取[J]. 红外与激光工程, 2011, 40(4):605-610.
    [14] Li Yu, Gao Jiaobo, Meng Hemin, et al. Fast inversion techniques of inteferogram imaging spectrum based on CUDA[J]. Journal of Applied Optics, 2014, 35(3):415-419. (in Chinese)李宇, 高教波, 孟合民, 等. 基于统一计算设备架构的干涉成像光谱快速反演技术研究[J]. 应用光学, 2014, 35(3):415-419.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(440) PDF downloads(130) Cited by()

Related
Proportional views

LWIR imaging spectrometer employing a variable gap Fabry-Perot interferometer

doi: 10.3788/IRLA201746.0318001
  • 1. Xi'an Institute of Applied Optics,Xi'an 710065,China

Abstract: With unique working principle and spectral characteristic, the long wave infrared (LWIR) interferometric spectral imaging is a popular technology with wide application in many fields. In order to miniaturize and light the instrument, a new method of LWIR spectral imaging system based on a variable gap Fabry-Perot (F-P) interferometer was researched. With the system working principle analyzed, theoretically, it was researched that how to make certain the primary parameters, such as, the reflectivity of the two interferometric cavity surface and the wedge angle of interferometric cavity. A prototype was developed and good experimental results of blackbody and polypropylene film were obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return