Volume 46 Issue 7
Aug.  2017
Turn off MathJax
Article Contents

Zhang Qian, Zhang Peiqing, Zeng Jianghui, Dai Shixun, Wang Xunsi. Mid-infrared fiber grating optical switch of Ge20As20Se15Te45 chalcogenide glass[J]. Infrared and Laser Engineering, 2017, 46(7): 720002-0720002(7). doi: 10.3788/IRLA201746.0720002
Citation: Zhang Qian, Zhang Peiqing, Zeng Jianghui, Dai Shixun, Wang Xunsi. Mid-infrared fiber grating optical switch of Ge20As20Se15Te45 chalcogenide glass[J]. Infrared and Laser Engineering, 2017, 46(7): 720002-0720002(7). doi: 10.3788/IRLA201746.0720002

Mid-infrared fiber grating optical switch of Ge20As20Se15Te45 chalcogenide glass

doi: 10.3788/IRLA201746.0720002
  • Received Date: 2016-11-10
  • Rev Recd Date: 2016-12-20
  • Publish Date: 2017-07-25
  • Ge20As20Se15Te45 chalcogenide glass was prepared by a melt-quenching method. Testing results show that this glass posses high nonlinear characteristics and wide infrared transmission windows in the infrared region. The third-order nonlinear coefficient was tested to be n2=6.7210-18 m2/W@4 m by a Z-scan technique. Two kinds of chalcogenide glass infrared fiber grating optical switches were designed with this glass. The reflection spectrum and grating wavelength shift of optical switches were calculated with the distributed time-domain transfer matrix method (TD-TMM) and non-linear coupling equations. Results show that the Bragg wavelength can be flexibly tuned by modulating the input intensity and optical switch can be achieved. It was found that the power threshold is about 1.6 GW/cm2 for an optical switch with a modulation depth of 110-3 in a uniform chalcogenide Bragg fiber grating and the power threshold can be significantly reduced to about 210 MW/cm2 in a phase-shift chalcogenide fiber grating with a modulation depth of only 310-4.
  • [1] Tao Zisheng, Huang Yonglin. Optical switches based on FEG with anisotropic cladding[J]. Study on Optical Communications, 2016, 42(1):35-37. (in Chinese)陶子盛, 黄勇林. 基于包层各向异性FBG的光开关[J]. 光通信研究, 2016, 42(1):35-37.
    [2] Larochelle S, Hibino Y, Mizrahi V, et al. All-optical switching of grating transmission using cross-phase modulation in optical fibres[J]. Electronics Letters, 1990, 26(18):1459-1460.
    [3] Eggleton B J, Slusher R E, Judkins J B, et al. All-optical switching in long-period fiber gratings[J]. Optics Letters, 1997, 22(12):883-835.
    [4] Melloni A, Chinello M, Martinelli M, et al. All-optical switching in phase-shifted fiber gratings[J]. Filtration Industry Analyst, 2000, 12(1):42-44.
    [5] Sun Lihong, Wang Xunsi, Zhu Qingde, et al. Advance on the exploration and evaluation of high nonlinear chalcogenide glasses[J]. Laser Optoelectronics Progress, 2016, 53(2):7-15. (in Chinese)孙礼红, 王训四, 祝清德, 等. 高非线性硫系玻璃开发及其理论研究进展[J]. 激光与光电子学进展, 2016, 53(2):7-15.
    [6] Bai Yu, Liao Zhiyuan, Li Hua, et al. Application of the chalcogenide glass in modern infrared thermal imaging systems[J]. Chinese Optics, 2014, 7(3):449-455. (in Chinese)白瑜, 廖志远, 李华, 等. 硫系玻璃在现代红外热成像系统中的应用[J]. 中国光学, 2014, 7(3):449-455.
    [7] Xu Yantao, Guo Haitao, Lu Min, et al. Preparation and properties of low-loss core-cladding structural Ge-Sb-Se chalcogenide glass fibers[J]. Infrared and Laser Engineering, 2015, 44(1):182-187. (in Chinese)许彦涛, 郭海涛, 陆敏, 等. 低损耗芯包结构Ge-Sb-Se硫系玻璃光纤的制备与性能研究[J]. 红外与激光工程, 2015, 44(1):182-187.
    [8] Fu Qiang, Zhang Xin. Athermalization of the medium-wave infrared optical system based on chalcogenide glasses[J]. Infrared and Laser Engineering, 2015, 44(5):1467-1471. (in Chinese)付强, 张新. 基于硫系玻璃的中波红外光学系统无热化设计[J]. 红外与激光工程, 2015, 44(5):1467-1471.
    [9] Dong Fanlong, Zhao Fangzhou, Ge Tingwu, et al. Optimization of beam quality for all-fiber lasers[J]. Optics and Precision Engineering, 2014, 22(4):844-849.(in Chinese)董繁龙, 赵方舟, 葛廷武, 等. 全光纤激光器光束质量的优化[J]. 光学精密工程, 2014, 22(4):844-849.
    [10] Liu Youqiang, Cao Yinhua, Li Jing, et al. 5 kW fiber coupling diode laser for laser processing[J]. Optics and Precision Engineering, 2015, 23(5):1279-1287. (in Chinese)刘友强, 曹银花, 李景, 等. 激光加工用5 kW光纤耦合半导体激光器[J]. 光学精密工程, 2015, 23(5):1279-1287.
    [11] Tanaka K, Toyosawa N, Hisakuni H. Photoinduced Bragg gratings in As2S3 optical fibers[J]. Optics Letters, 1995, 20(19):1976-1978.
    [12] Pudo D, Mgi E C, Eggleton B J. Long-period gratings in chalcogenide fibers[J]. Optics Express, 2006, 14(9):3763-3766.
    [13] Ahmad R, Rochette M, Baker C. Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires[J]. Optics Letters, 2011, 36(15):2886-2888.
    [14] Senderkov D. Analysis of spectral response of optical switching devices based on chalcogenide bistable fiber Bragg gratings[C]//SPIE, 2015, 9450:94501K.
    [15] Yang Guangqiang, Guo Yong, Song Ji'en, et al. Nonlinear switching characteristics of fiber Bragg gratings[J]. Semiconductor Optoelectronics, 2004, 25(2):94-97.(in Chinese)杨广强, 郭勇, 宋继恩, 等. Bragg光纤光栅非线性开关特性研究[J]. 半导体光电, 2004, 25(2):94-97.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(504) PDF downloads(80) Cited by()

Related
Proportional views

Mid-infrared fiber grating optical switch of Ge20As20Se15Te45 chalcogenide glass

doi: 10.3788/IRLA201746.0720002
  • 1. Laboratory Infrared Material and Device,Research Institute of Advanced Technolgies,Ningbo University,Ningbo 315211,China;
  • 2. Key Laboratory of Photoelectric Detecting Material and Device in Zhejiang Province,Ningbo 315211,China

Abstract: Ge20As20Se15Te45 chalcogenide glass was prepared by a melt-quenching method. Testing results show that this glass posses high nonlinear characteristics and wide infrared transmission windows in the infrared region. The third-order nonlinear coefficient was tested to be n2=6.7210-18 m2/W@4 m by a Z-scan technique. Two kinds of chalcogenide glass infrared fiber grating optical switches were designed with this glass. The reflection spectrum and grating wavelength shift of optical switches were calculated with the distributed time-domain transfer matrix method (TD-TMM) and non-linear coupling equations. Results show that the Bragg wavelength can be flexibly tuned by modulating the input intensity and optical switch can be achieved. It was found that the power threshold is about 1.6 GW/cm2 for an optical switch with a modulation depth of 110-3 in a uniform chalcogenide Bragg fiber grating and the power threshold can be significantly reduced to about 210 MW/cm2 in a phase-shift chalcogenide fiber grating with a modulation depth of only 310-4.

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return