Volume 47 Issue 1
Jan.  2018
Turn off MathJax
Article Contents

Ma Yi, Yan Hong, Sun Yinhong, Peng Wanjing, Li Jianmin, Wang Shufeng, Li Tenglong, Wang Yanshan, Tang Chun, Zhang Kai. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103002-0103002(14). doi: 10.3788/IRLA201847.0103002
Citation: Ma Yi, Yan Hong, Sun Yinhong, Peng Wanjing, Li Jianmin, Wang Shufeng, Li Tenglong, Wang Yanshan, Tang Chun, Zhang Kai. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103002-0103002(14). doi: 10.3788/IRLA201847.0103002

Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited)

doi: 10.3788/IRLA201847.0103002
  • Received Date: 2017-10-09
  • Rev Recd Date: 2017-12-12
  • Publish Date: 2018-01-25
  • A spectral beam combination(SBC) system with dual Multi-Layer Dielectric(MLD) grating dispersion compensation configuration, which can combine multiple fiber lasers into a common aperture beam with high beam quality and relax the linewidth requirement of the individual fiber laser, has become gradually one of the most important technique route of fiber laser beam combining. The basic principle and the key technologies of the SBC system with dual-MLD-grating configuration were introduced and analyzed briefly. The recent progress of the main key technologies about high power beam combinable narrow linewidth fiber laser, high power high efficiency short wavelength narrow linewidth fiber laser, large dispersion high efficiency MLD grating and high integration dense beam combining were reviewed. The recent progress on the key technologies of SBC with dual-MLD-configuration in Institute of Applied Electronics, China Academy of Engineering Physics, were also presented. The potential of the SBC with dual-MLD-configuration was prospected.
  • [1] Gapontsev V, Fomin V, Ferin A, et al. Diffraction limited ultra-high-power fiber lasers[C]//Advanced Solid-State Photonics, OSA Technical Digest Series, OSA, 2010:paper AWA1.
    [2] Michalis N Z, Christophe A C. High power fiber lasers:a review[J]. IEEE Journal of Select Topics in Quantum Electronics, 2014, 20(5):0904123.
    [3] Bourdon P, Lombard L, Durecu A, et al. Coherent combining of fiber lasers[C]//SPIE, 2017, 10254:1025402-1-10.
    [4] Shcherbakov E A, Fomin V V, Abramov A A,et al. Industrial grade 100 kW power CW fiber laser[C]//Advanced Solid-State Lasers Congress Technical Digest, OSA, 2013:ATh4A.
    [5] Madasamy P, Loftus T, Thomas P, et al. Comparison of spectral beam combining approaches for high power fiber laser systems[C]//SPIE, 2008, 6952:695207-1-10.
    [6] Schmidt O, Wirth C, Nodop D, et al. Spectral beam combination of fiber amplified ns-pulses by means of interference filter[J]. Optics Express, 2009, 17(25):22974-22982.
    [7] Andrusyak O, Ciapurin I, Smirnov V, et al. External and common-cavity high spectral density beam combining of high power fiber lasers[C]//SPIE, 2008, 6873:687314-1-8.
    [8] Andrusyak O, Smirnov V, Venus G, et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings[J]. IEEE Journal of Select Topics in Quantum Electronics, 2009, 15(2):344-353.
    [9] Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Optics Express, 2013, 21(24):29620-29627.
    [10] Drachenberg D R, Andrusyak O, Venus G, et al. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers[J]. Applied Optics, 2014, 53(6):1242-1246.
    [11] Pu Shibing, Jiang Zongfu, Xu Xiaojun. Numerical analysis of spectral beam combining by volume Bragg grating[J]. High Power Laser and Particle Beams, 2008, 20(5):721-724. (in Chinese)蒲世兵, 姜宗福, 许晓军. 基于体布拉格光栅的光谱合成的数值分析[J]. 强激光与粒子束, 2008, 20(5):721-724.
    [12] Wang Junzhen, Wang Yuefeng, Bai Huijun. Study on multi-channel spectral beam combined characteristics based on volume Bragg gratings[J]. Laser Technology, 2012, 36(5):593-596. (in Chinese)王军阵, 汪岳峰, 白慧君. 多路激光体布喇格光栅光谱合成特性研究[J]. 激光技术, 2012, 36(5):593-596.
    [13] Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg gratings[J]. High Power Laser and Particle Beams, 2015, 27(7):071012. (in Chinese)梁小宝, 陈良明, 李超, 等. 体布拉格光栅用于高功率光谱组束的研究[J]. 强激光与粒子束, 2015, 27(7):071012.
    [14] Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Select Topics in Quantum Electronics, 2007, 13(3):487-497.
    [15] Wirth C, Schmidt O, Tsybin L I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36(16):3118-3120.
    [16] Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency and brightness[C]//SPIE, 2013, 8601:8601115-1-5.
    [17] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//SPIE, 2015, 9730:97300Y.
    [18] Liu A, Mead R, Vatter T, et al. Spectral beam combining of high power fiber lasers[C]//SPIE, 2004, 5335:81-88.
    [19] Madasamy P, Jander D, Brooks C, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Select Topics in Quantum Electronics, 2009, 15(2):337-343.
    [20] Tian Fei, Yan Hong, Chen Li,et al. Investigation on the influence of spectral linewidth broadening on beam quality in spectral beam combination[C]//SPIE, 2014, 9255:92553N.
    [21] Ma Yi, Yan Hong, Tian Fei, et al. Common apertures spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle Beams, 2015, 27(4):040101. (in Chinese)马毅, 颜宏, 田飞, 等. 光纤激光共孔径光谱合成实现5kW高效优质输出[J]. 强激光与粒子束, 2015, 27(4):040101.
    [22] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese J Lasers, 2016, 43(9):0901009. (in Chinese)马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43(9):0901009.
    [23] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3):666-669.
    [24] Huang L, Wu H, Li R, et al. 414 W near-diffraction-limited all-fiberized single frequency polarization-maintained fiber amplifier[J]. Optics Letters, 2017, 42(1):1-4.
    [25] Khitrov V, Farley K, Leveille R, et al. kW level narrow linewidth Yb fiber amplifiers for beam combining[C]//SPIE, 2010, 7686:76860A.
    [26] Engin D, Lu W, Akbulut M,et al. 1 kW CW Yb-fiber-amplifier with 0.5 GHz linewidth and near diffraction limited beam-quality, for coherent combining application[C]//SPIE, 2011, 7914:791407-1-7.
    [27] Flores A, Robin C, Lanari A,et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 2014, 22(15):17735-17744.
    [28] Huang Z, Liang X, Li C, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2):297-302.
    [29] Sun Yihong, Feng Yujun, Li Tenglong, et al. 1.06 kW 13 GHz linewidth all fiber laser[J]. High Power Laser and Particle Beams, 2015, 27(7):071013. (in Chinese)孙殷宏, 冯昱骏, 李腾龙, 等. 1.06 kW 13 GHz线宽全光纤激光器[J]. 强激光与粒子束, 2015, 27(7):071013.
    [30] Ma P, Tao R, Su R, et al. 1.89 kW all-fiberized and polarization maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4):4187-4195.
    [31] Su R, Tao R, Wang X, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Phys Lett, 2017, 14(8):085102.
    [32] Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbiumdoped low NA fiber amplifier[J]. Optics Express, 2016, 24(6):6011-6020.
    [33] Platonov N, Yagodkin R, Cruz J, et al. 1.5 kW linear polarized on PM fiber and 2kW on non-PM fiber narrow linewidth CW diffraction-limited fiber amplifier[C]//SPIE, 2017, 10085:100850M.
    [34] 杨依枫, 沈辉, 陈晓龙, 等. 全光纤化高效率、窄线宽光纤激光器实现2.5 kW近衍射极限输出[J]. 中国激光, 2016, 43(4):0419004.
    [35] Xu J, Liu W, Leng J, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW[J]. Optics Letters, 2015, 40(13):2973-2976.
    [36] Du X, Zhang H, Ma P,et al.Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser[J]. Optics Letters, 2015, 40(22):5311-5314.
    [37] Li Tenglong, Li Yang, Peng Wanjing,et al. 1.1 kW narrowband spectra random fiber laser amplifier[J]. Chinese J Lasers, 2017, 44(2):0202015. (in Chinese)李腾龙, 李阳, 彭万敬, 等. 1.1 kW窄光谱随机光纤激光放大[J]. 中国激光, 2017, 44(2):0202015.
    [38] Smith A, Smith J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11):10180-10912.
    [39] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. A novel theoretical model for mode instability in high power fiber lasers[C]//Advanced Solid State Laser, 2014:AM5A.20.
    [40] Li Zebiao, Huang Zhihua, Xiang Xiaoyu. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser[J]. Photonics Research, 2017, 5(2):77-81.
    [41] Wang Yanshan, Liu Qinyong, Ma Yi, et al. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers[J]. Ann Phys, 2017, 529(8):1600398.
    [42] Huang Y, Edgecumbe J, Ding Jianwu, et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths:1028-1100 nm[C]//SPIE, 2014, 8961:89612K.
    [43] Yagodkin R, Platonov N, Yusim A, et al. 1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[C]//SPIE, 2015, 9728:972807-1-6.
    [44] Sun Yinhong, Ke Weiwei, Feng Yujun, et al. 1030 nm kilowatt-level ytterbium-doped narrow linewidth fiber amplifier[J]. Chinese J Lasers, 2016, 43(6):0601003. (in Chinese)孙殷宏, 柯伟伟, 冯昱骏, 等. 1030 nm千瓦级掺镱光纤窄线宽激光放大器[J]. 中国激光, 2016, 43(6):0601003.
    [45] Naderi A, Dajani I, Flores A. High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5):1018-1021.
    [46] Chen Hui, Guan Heyuan, Zeng Lijiang, et al.Fabrication of broadband, high-efficiency, metal-multilayer-dielectric gratings[J]. Optics Communications, 2014, 329(2014):103-108.
    [47] Hu Anduo, Zhou Changhe, Cao Hongchao, et al. Polarization-independent wideband mixed metal dielectric reflective gratings[J]. Applied Optics, 2012, 51(20):4902-4906.
    [48] Naderi A, Dajani I, Flores A. High-efficiency multilayer dielectric diffraction gratings[J]. Optics Letters, 1995, 20(8):940-942.
    [49] Clausnitzer T, Limpert J, Zollner K, et al. Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems[J]. Applied Optics, 2003, 42(34):6934-6938.
    [50] Rumpel M, Moeller M, Moormann C, et al. Broadband pulse compression gratings with measured 99.7% diffraction efficiency[J]. Optics Letters, 2014, 39(2):323-326.
    [51] Kemme S A,Scrymgeour D A,Peter D W. High-efficiency diffractive optical eements for spectral beam combining[C]//SPIE, 2012, 8381:83810Q.
    [52] Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11):12063-12071.
    [53] Cho H, Kim H, Lee Y. Design and fabrication of multilayer dielectric gratings for spectral beam combining[C]//SPIE, 2015, 9556:955615-1-6.
    [54] Shen Biyao, Zeng Lijiang, Li Lifeng, et al. Fabrication of polarization independent gratings made on multilayer dielectric thin film substrates[J]. High Power Laser and Particle Beams, 2015, 27(11):111013. (in Chinese)申碧瑶, 曾理江, 李立峰, 等. 多层介质膜偏振无关光栅的研制[J].强激光与粒子束, 2015, 27(11):111013.
    [55] Beresnev L, Motes R, Townes K, et al. Design of a noncooled fiber collimator for compact, high-efficiency fiber laser arrays[J]. Applied Optics, 2017, 56(3):B169-B178.
    [56] 李腾龙, 查从文, 彭万敬, 等. 2 kW窄光谱随机光纤激光放大输出[J]. 中国激光, 2017, 44(4):0415003.
    [57] Sun Yinhong. Theory and experiment study on fiber laser with high power and narrow linewidth[D]. Mianyang:China Academy of Engineering Physics, 2016:51-53. (in Chinese)孙殷宏. 高功率窄线宽光纤激光器理论和实验研究[D]. 绵阳:中国工程物理研究院, 2016:51-53.
    [58] Cheung E, Ho J, Goodno G, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Opt Lett, 2008, 33(4):354-356.
    [59] Thielen P, Ho J, Burchman D, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Opt Lett, 2012, 37(18):3741-3743.
    [60] Redmond S M, Fan T Y, Ripin D J, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Opt Lett, 2012, 37(14):2832-2834.
    [61] Flores A, Ehrenreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//SPIE, 2015, 9728:97281Y.
    [62] Goodno G, Shih C, Rothenberg, et al. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 2010, 18(24):25403-25414.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(847) PDF downloads(234) Cited by()

Related
Proportional views

Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited)

doi: 10.3788/IRLA201847.0103002
  • 1. Institute of Applied Electronics,China Academy of Engineering Physics,Mianyang 621900,China;
  • 2. The Key Laboratory of Science and Technology on High Energy Laser,China Academy of Engineering Physics,Mianyang 621900,China

Abstract: A spectral beam combination(SBC) system with dual Multi-Layer Dielectric(MLD) grating dispersion compensation configuration, which can combine multiple fiber lasers into a common aperture beam with high beam quality and relax the linewidth requirement of the individual fiber laser, has become gradually one of the most important technique route of fiber laser beam combining. The basic principle and the key technologies of the SBC system with dual-MLD-grating configuration were introduced and analyzed briefly. The recent progress of the main key technologies about high power beam combinable narrow linewidth fiber laser, high power high efficiency short wavelength narrow linewidth fiber laser, large dispersion high efficiency MLD grating and high integration dense beam combining were reviewed. The recent progress on the key technologies of SBC with dual-MLD-configuration in Institute of Applied Electronics, China Academy of Engineering Physics, were also presented. The potential of the SBC with dual-MLD-configuration was prospected.

Reference (62)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return