Volume 47 Issue 4
Apr.  2018
Turn off MathJax
Article Contents

Li Nan, Qiao Chunhong, Fan Chengyu, Yang Gaochao. Temperature characteristics of absorber for large-energy long pulse laser energy meter[J]. Infrared and Laser Engineering, 2018, 47(4): 406004-0406004(6). doi: 10.3788/IRLA201847.0406004
Citation: Li Nan, Qiao Chunhong, Fan Chengyu, Yang Gaochao. Temperature characteristics of absorber for large-energy long pulse laser energy meter[J]. Infrared and Laser Engineering, 2018, 47(4): 406004-0406004(6). doi: 10.3788/IRLA201847.0406004

Temperature characteristics of absorber for large-energy long pulse laser energy meter

doi: 10.3788/IRLA201847.0406004
  • Received Date: 2017-05-02
  • Rev Recd Date: 2017-06-20
  • Publish Date: 2018-04-25
  • For requirement of accurate measurement of large-energy long pulse laser energy, the temperature characteristics of absorber for laser energy meter are numerically analyzed and researched. The results show that, the temperature of absorber inwall rises with periodic oscillation. As the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and it rises gradually with time. Meanwhile, the factors to affect the temperature rise are single pulse energy, pulse width and repetition frequency. When the single pulse energy is same, the shorter the pulse width, the higher the temperature rise of absorber inwall. And also the higher the pulse repetition frequency, the higher the temperature rise of absorber inwall. But when the total energy is same, the higher the repetition frequency, the lower the temperature rise of absorber inwall. By the optimization design of absorber structure, the total energy of long pulse laser sequence can be measured. As well as the energy of every pulse for low repetition frequency pulse sequence can be obtained, when the repetition frequency of long pulse laser sequence is less than 10 Hz. The work provides important references for the design and application of large-energy long pulse laser energy meter.
  • [1] Zhu Mengzhen, Wan Qiang, Liu Xu, et al. Study on coherent characteristic of solid state laser with corner cube resonator[J]. Infrared and Laser Engineering, 2016, 45(9):0906008. (in Chinese)朱孟真, 万强, 刘旭, 等.角锥腔固体激光器相干特性的研究[J]. 红外与激光工程, 2016,45(9):0906008.
    [2] Pan Qikun. Progress of mid-infrared solid-state laser[J]. Chinese Optics, 2015, 8(4):557-566. (in Chinese)潘其坤. 中红外固体激光器研究进展[J]. 中国光学, 2015, 8(4):557-566.
    [3] Fu Xihong. Diode-pumped all-solid-state sum-frequency mixing laser at 608.1 nm[J]. Chinese Optics, 2015, 8(5):794-799. (in Chinese)付喜宏. LD泵浦全固态608.1 nm和频激光器[J]. 中国光学, 2015, 8(5):794-799.
    [4] Gan Qijun, Jiang Benxue, Zhang Pande, et al. Research progress of high average power solid-state Lasers[J]. Laser Optoelectronics Progress, 2017, 54:010003. (in Chinese)甘啟俊, 姜本学, 张攀德, 等. 高平均功率固体激光器研究进展[J]. 激光与光电子学进展, 2017, 54:010003.
    [5] Cheng Yong, Zhu Mengzhen, Ma Yunfeng. Mechanism and effects of complex laser ablation[J]. Infrared and Laser Engineering, 2016, 45(11):1105005.(in Chinese)程勇, 朱孟真, 马云峰, 等. 激光复合损伤机理与效应研究[J]. 红外与激光工程, 2016, 45(11):1105005.
    [6] Song Wei, Zhang Yanan, Shen Linyong. Target positioning in high power laser device[J]. Optics and Precision Engineering, 2015, 23(2):520-527. (in Chinese)宋薇, 章亚男, 沈林勇.高功率激光装置中靶的定位调试[J]. 光学精密工程, 2015, 23(2):520-527.
    [7] Lu Yaodong, Shi Hongmin, Qi Xue, et al. Integrated sphere application in the field of powerful laser energy measurement[J]. High Power Laser and Particle Beams, 2002, 12(s0):106-108. (in Chinese)陆耀东, 史红民, 齐学等. 积分球技术在高能激光能量测量中的应用[J]. 强激光与粒子束, 2002, 12(s0):106-108.
    [8] Wei Jifeng, Jiang Zhixiong, Lu Fei. Design of graphite-cone-absorption-cavity absolute energy meter for high energy laser[J]. Chinese Journal of Lasers, 2015, 42(2):0208006. (in Chinese)魏继锋, 蒋志雄, 卢飞, 等.石墨锥型高能激光全吸收能量计设计[J]. 中国激光, 2015, 42(2):0208006.
    [9] Li Gaoping, Yang Hongru, Yang Bin, et al. High-accuracy optical calibration technology for absolute-absorbing laser energy meter[J]. Journal of Applied Optics, 2014, 35(3):438-440. (in Chinese)黎高平, 杨鸿儒, 杨斌, 等. 绝对吸收式激光能量计高准确度校准技术研究[J]. 应用光学, 2014, 35(3):438-440.
    [10] Wei Jifeng, Lu Fei, Jiang Zhixiong, et al. Controlling technology of temperature field for absorbers of gilded-reflection-cone high energy laser energy meter[J]. High Power Laser and Particle Beams, 2015, 27(12):121001. (in Chinese)魏继峰, 卢飞, 蒋志雄, 等. 阶梯反射锥形高能激光能量计温度场控制技术[J]. 强激光与粒子束, 2015, 27(12):121001.
    [11] Wei Jifeng, Sun Liqun, Zhang Kai, et al, Heat exchange model in absorption chamber of water-direct-absorption-typed laser energy meter[J]. Optic and Laser Technology, 2015, 67:65-71.
    [12] Su Yi, Wan Min. High Energy Laser System[M]. Beijing:National Defence Industry Press, 2004:240-241. (in Chinese)苏毅, 万敏. 高能激光系统[M]. 北京:国防工业出版社, 2004:240-242.
    [13] Wang Lei, Yang Zhaojin, Li Gaoping, et al. Research on temperature characteristics of absolute energy meter for high-energy laser[J]. Journal of Applied Optics, 2005, 26(5):29-32. (in Chinese)王雷, 杨照金, 黎高平, 等.绝对式高能量激光能量计温度特性研究[J]. 应用光学, 2005, 26(5):29-32.
    [14] Liu Guorong, Wu Hongcai. Influence of temperature difference between inner and outer surface of calorimetric laser energy meter on measurement result[J]. Acta Photonica Sinica, 2007, 36(S):154-156.(in Chinese)刘国荣, 吴洪才. 量热式激光能量计内外表面温差对测量结果的影响[J]. 光子学报, 2007, 36(S):154-156.
    [15] Luo Huaping, Yang Gaochao, Song Zhengfang, et al. Metal heat response duration to CW laser[J]. Chinese Journal of Quantum Electronics, 2005, 22(3):427-430. (in Chinese)罗华平, 杨高潮, 宋正方, 等.金属材料对连续激光的热响应[J]. 量子电子学报, 2005, 22(3):427-430.
    [16] Li Nan, Luo Huaping, Yang Gaochao, et al. The numerical calculation for the thermal effect of metal spherical shell irradiated by laser[J]. Chinese Journal of Quantum Electronics, 2009, 26(3):366-370. (in Chinese)李南, 罗华平, 杨高潮, 等.金属球壳在激光辐照下热效应的数值计算[J]. 量子电子学报, 2009, 26(3):366-370.
    [17] Zhao Falin, Xu Jun, Xu Yibin, et al. Temperature characteristics of an absorbing cavity in the calorimetric energy meter for high energy laser[J]. Infrared and Laser Engineering, 2009, 38(5):825-829. (in Chinese)赵法林, 徐军, 许毅玢, 等.高能激光能量计吸收腔的温度特性[J]. 红外与激光工程, 2009, 38(5):825-829.
    [18] Wang Zhenbao, Feng Guobin, Chen Shaowu, et al. Design and analysis of absorbing cavity in full absorbing HEL rotational calorimeter[J]. Infrared and Laser Engineering,2016, 45(12):1217010. (in Chinese)王振宝, 冯国斌, 陈绍武, 等. 全吸收旋转式高能激光能量计吸收腔设计[J]. 红外与激光工程, 2016, 45(12):1217010.
    [19] Wei Chenghua, Wang Lijun, Liu Weiping, et al. Thermal response of 45# steel coupling with multi-layer oxide film evolution by laser radiation[J]. Optics and Precision Engineering, 2014, 22(8):2061-2066. (in Chinese)韦成华, 王立君, 刘卫平, 等. 基于多层氧化膜演化的45#钢激光辐照热效应[J]. 光学精密工程, 2014, 22(8):2061-2066.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(326) PDF downloads(36) Cited by()

Related
Proportional views

Temperature characteristics of absorber for large-energy long pulse laser energy meter

doi: 10.3788/IRLA201847.0406004
  • 1. Key Laboratory of Atmospheric Composition and Optical Radiation,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China;
  • 2. University of Chinese Academy of Sciences,Beijing 100049,China

Abstract: For requirement of accurate measurement of large-energy long pulse laser energy, the temperature characteristics of absorber for laser energy meter are numerically analyzed and researched. The results show that, the temperature of absorber inwall rises with periodic oscillation. As the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and it rises gradually with time. Meanwhile, the factors to affect the temperature rise are single pulse energy, pulse width and repetition frequency. When the single pulse energy is same, the shorter the pulse width, the higher the temperature rise of absorber inwall. And also the higher the pulse repetition frequency, the higher the temperature rise of absorber inwall. But when the total energy is same, the higher the repetition frequency, the lower the temperature rise of absorber inwall. By the optimization design of absorber structure, the total energy of long pulse laser sequence can be measured. As well as the energy of every pulse for low repetition frequency pulse sequence can be obtained, when the repetition frequency of long pulse laser sequence is less than 10 Hz. The work provides important references for the design and application of large-energy long pulse laser energy meter.

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return