Volume 47 Issue 4
Apr.  2018
Turn off MathJax
Article Contents

Huang Yingqing, Su Jian, Chen Yibei, Yan Xingpeng, Jiang Xiaoyu. Progress in holographic printing technique[J]. Infrared and Laser Engineering, 2018, 47(4): 406008-0406008(13). doi: 10.3788/IRLA201847.0406008
Citation: Huang Yingqing, Su Jian, Chen Yibei, Yan Xingpeng, Jiang Xiaoyu. Progress in holographic printing technique[J]. Infrared and Laser Engineering, 2018, 47(4): 406008-0406008(13). doi: 10.3788/IRLA201847.0406008

Progress in holographic printing technique

doi: 10.3788/IRLA201847.0406008
  • Received Date: 2017-11-12
  • Rev Recd Date: 2017-12-16
  • Publish Date: 2018-04-25
  • Holographic printing technique can achieve a true three-dimensional display of the scene well. Based on different sources and different recording methods of interference patterns, holographic printing techniques can be classified as synthetic holographic stereogram printing, computer-generated hologram printing, and wavefront printing. Synthetic holographic stereogram printing can't record the depth information of the three-dimensional scene accurately, so there occurs the vergence-accommodation conflicts during the reconstruction of the hologram. Computer-generated hologram printing can record and reconstruct the depth information of the scene accurately, and solve the vergence-accommodation conflicts. However, the hologram is only a thin transmission hologram which can't be reconstructed by white light. Wavefront printing can not only solve the vergence-accommodation conflicts, but also achieve a thick reflection hologram for white-light reconstruction with good observation effect. Principles of different holographic printing techniques were introduced, then research status of each technique was analyzed. Finally, the advantages and disadvantages of them were discussed to illustrate their own properties.
  • [1] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098):777-778.
    [2] Yamaguchi M. Full-parallax holographic light-field 3-D displays and interactive 3-D touch[J].Proc IEEE, 2017, 105(5):947-959.
    [3] Park J-S, Stoykova E, Kang H-J. White light viewable silver-halide holograms in design applications[J]. Bulg Chem Commun, 2016, 48:37-40.
    [4] Bjelkhagen H I, Brotherton-Ratcliffe D. Ultrarealistic imaging:the future of display holography[J]. Opt Eng, 2014, 53(11):112310.
    [5] Lucente M. The first 20 years of holographic video-and the next 20[C]//SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment, 2011.
    [6] Zheng Huadong, Sun Guodong, Yu Yingjie. A review of holographic printing technologies[J]. Laser Optoelectronics Progress, 2012, 49(11):110002. (in Chinese)郑华东, 孙国栋, 于瀛洁. 全息打印技术综述[J]. 激光与光电子学进展, 2012, 49(11):110002.
    [7] Yamaguchi M. Light-field and holographic three-dimensional displays[Invited] [J]. J Opt Soc Am A, 2016, 33(12):2348-2364.
    [8] Kang H, Stoykova E, Berberova N, et al. Three-dimensional imaging of cultural heritage artifacts with holographic printers[C]//SPIE, 2017, 10226:102261l.
    [9] Yoshikawa H, Yamaguchi T. Review of holographic printers for computer-generated holograms[J]. IEEE T Ind Inform, 2016, 12(4):1584-1589.
    [10] Jolly S, Smalley D E, Barabas J, et al. Direct fringe writing architecture for photorefractive polymer-based holographic displays:analysis and implementation[J]. Opt Eng, 2013, 52(5):055801.
    [11] Kang H, Stoykova E, Yoshikawa H, et al. Comparison of System Properties for Wave-front Holographic Printers[M]. Heidelberg:Springer-Verlag Berlin, 2014.
    [12] DeBitetto D J. Holographic panoramic stereograms synthesized from white light recordings[J]. Appl Opt, 1969, 8(8):1740-1741.
    [13] King M C, Noll A M, Berry D H. A new approach to computer-generated holography[J]. Appl Opt, 1970, 9(2):471-475.
    [14] Su J, Yuan Q, Huang Y, et al. Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images' segmentation and mosaicking[J]. Opt Express, 2017, 25(19):23523-23544.
    [15] Kang H, Stoykova E, Park J, et al. Holographic Printing of White-light Viewable Holograms and Stereograms[M]. London:InTech Press, 2013.
    [16] Halle M W. The generalized holographic stereogram[D]. Cambridge:Massachusetts Institute of Technology, 1991.
    [17] Halle M W, Benton S A, Klug M A, et al. The Ultrgram:a generalized holographic stereogram[C]//SPIE, 1991, 1461:142-155.
    [18] Yamaguchi M, Ohyama N, Honda T. Holographic three-dimensional printer:new method[J]. Appl Opt, 1992, 31(2):217-222.
    [19] Yamaguchi M, Endoh H, Honda T, et al. High-quality recording of a full-parallax holographic sterogram with a digital diffuser[J]. Opt Lett, 1994, 19(2):135-137.
    [20] Benton S A, Bove V M. Holographic Imaging[M]. New York:John Wiley Sons, 2008.
    [21] Zherdev A Y, Odinokov S B, Lushnikov D S, et al. High-aperture diffractive lens for holographic printer[C]//SPIE, 2016, 10022:100220I.
    [22] Park J, Kang H, Stoykova E, et al. Numerical reconstruction of a full parallax holographic stereogram with radial distortion[J]. Opt Express, 2014, 22(17):20776-20788.
    [23] Park J, Stoykova E, Kang H, et al. Numerical reconstruction of full parallax holographic stereograms[J]. 3D Research, 2012, 3(3):1-6.
    [24] Morozov A V, Putilin A N, Kopenkin S S, et al. 3D holographic printer:fast printing approach[J]. Opt Express, 2014, 22(3):2193-2206.
    [25] Rong X, Yu X, Guan C. Multichannel holographic recording method for three-dimensional displays[J]. Appl Opt, 2011, 50(7):B77-B80.
    [26] Yamaguchi M, Endoh H, Koyama T, et al. High-speed recording of full-parallax holographic stereograms by a parallel exposure system[J]. Opt Eng, 1996, 35(6):1556-1559.
    [27] Brotherton-Ratcliffe D, Zacharovas S J, Bakanas R J, et al. Digital holographic printing using pulsed RGB lasers[J]. Opt Eng, 2011, 50(9):091307.
    [28] Bakanas R, Jankauskait? V, Bulanovs A, et al. Comparison of diffraction patterns exposed by pulsed and CW lasers on positive-tone photoresist[J]. Appl Opt, 2017, 56(8):2241-2249.
    [29] Brotherton-Ratcliffe D, Vergnes F M, Rodin A, et al. Holographic printer:US, US7800803B2[P]. 1999.
    [30] Wu Qiong, Wang Hui, Shi Yile, et al. Color reproduction quantitative analysis of color reflection holography[J]. Chinese Journal of Lasers, 2016, 43(11):1109001. (in Chinese)吴琼, 王辉, 施逸乐, 等. 彩色反射全息图颜色再现定量分析[J]. 中国激光, 2016, 43(11):1109001.
    [31] Yang F, Murakami Y, Yamaguchi M. Digital color management in full-color holographic three-dimensional printer[J]. Appl Opt, 2012, 51(19):4343-4352.
    [32] Takano M, Shigeta H, Nishihara T, et al. Full-color holographic 3D printer[C]//SPIE, 2003, 5005:126-136.
    [33] Bjelkhagen H I, Mirlis E. Color holography to produce highly realistic three-dimensional images[J]. Appl Opt, 2008, 47(4):A123-A133.
    [34] Maruyama S, Ono Y, Yamaguchi M. High-density recording of full-color full-parallax holographic stereogram[C]//SPIE, 2008, 6912:69120N.
    [35] Lucente M. Diffraction-specific fringe computation for electro-holography[D]. Cambridge:Massachusetts Institute of Technology, 1994.
    [36] Hong K, Park S-G, Yeom J, et al. Resolution enhancement of holographic printer using a hogel overlapping method[J]. Opt Express, 2013, 21(12):14047-14055.
    [37] Utsugi T, Yamaguchi M. Reduction of the recorded speckle noise in holographic 3D printer[J]. Opt Express, 2013, 21(1):662-674.
    [38] Klug M A, Halle M W, Lucente M, et al. A compact prototype one-step Ultragram printer[C]//SPIE, 1993, 1914:15-24.
    [39] Suzuki N, Tomita Y. Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%[J]. Appl Opt, 2004, 43(10):2125-2129.
    [40] Li C, Cao L, Li J, et al. Improvement of volume holographic performance by plasmon-induced holographic absorption grating[J]. Appl Phys Lett, 2013, 102(6):061108.
    [41] Li C, Cao L, Wang Z, et al. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer[J]. Opt Lett, 2014, 39(24):6891-6894.
    [42] Blanche P-A, Bablumian A, Voorakaranam R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer[J]. Nature, 2010, 468(7320):80-83.
    [43] Tay S, Blanche P-A, Voorakaranam R, et al. An updatable holographic three-dimensional display[J]. Nature, 2008, 451(7179):694-698.
    [44] Tsutsumi N, Kinashi K, Tada K, et al. Fully updatable three-dimensional holographic stereogram display device based on organic monolithic compound[J]. Opt Express, 2013, 21(17):19880-19884.
    [45] Tsutsumi N, Kinashi K, Sakai W, et al. Real-time three-dimensional holographic display using a monolithic organic compound dispersed film[J]. Opt Mater Express, 2012, 2(8):1003-1010.
    [46] Gao H, Liu P, Liu J, et al. Study on permanent holographic recording in trimethylol propane triacrylate-based photopolymer films with high diffraction efficiency[J]. J Opt Soc Am B, 2017, 34(5):B22-B27.
    [47] Gao H, Liu P, Zeng C, et al. Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films[J]. Chin Phys B, 2016, 25(9):094205.
    [48] Zeng Chao, Gao Hongyue, Liu Jicheng, et al. Latest developments of dynamic holographic three-dimensional display[J]. Acta Physica Sinica, 2015, 64(12):124215. (in Chinese)曾超, 高洪跃, 刘吉成, 等. 动态全息三维显示研究最新进展[J]. 物理学报, 2015, 64(12):124215.
    [49] Lee B, Kim J-H, Moon K, et al. Holographic stereogram printing under the non-vibration environment[C]//SPIE, 2014, 9117:911704.
    [50] Plesniak W J, Halle M W, Bove V M, et al. Reconfigurable image projection holograms[J]. Opt Eng, 2006, 45(11):115801.
    [51] St.-Hilaire P. Modulation transfer function and optimum sampling of holographic stereograms[J]. Appl Opt, 1994, 33(5):768-774.
    [52] Helseth L E. Optical transfer function of three-dimensional display systems[J]. J Opt Soc Am A, 2006, 23(4):816-820.
    [53] Jiang X, Pei C, Liu J, et al. Optimization of exit pupil function:improvement on the OTF of full parallax holographic stereograms[J]. J Opt, 2013, 15(12):125402.
    [54] Yu C, Yuan J, Fan F C, et al. The modulation function and realizing method of holographic functional screen[J]. Opt Express, 2010, 18(26):27820-27826.
    [55] Newswanger C, Klug M. Holograms for the masses[C]//9th International Symposium on Display Holography (ISDH), 2012, 415:012082.
    [56] Brotherton-Ratcliffe D. Large format digital colour holograms produced using RGB pulsed laser technology[C]//Proceedings of the 7th International Symposium on Display Holography, 2006:200-208.
    [57] Takaki Y, Yokouchi M. Accommodation measurements of horizontally scanning holographic display[J]. Opt Express, 2012, 20(4):3918-3931.
    [58] Yoshikawa H, Takei K. Development of a compact direct fringe printer for computer-generated holograms[C]//SPIE, 2004, 5290:114-121.
    [59] Yamaguchi T, Yoshikawa H. Computer-generated image hologram[J]. Chin Opt Lett, 2011, 9(12):120006.
    [60] Sohn I-B, Choi H-K, Yoo D, et al. Three-dimensional hologram printing by single beam femtosecond laser direct writing[J]. Appl Surf Sci, 2018, 427(Part A):396-400.
    [61] Yan Gaobin, Yu Jia, Liu Huiping, et al. Full parallax stereo holography research based on CGH[J]. Infrared and Laser Engineering, 2015, 44(8):2467-2471. (in Chinese)闫高宾, 于佳, 刘惠萍, 等. 基于计算全息的全视差合成全息研究[J]. 红外与激光工程, 2015, 44(8):2467-2471.
    [62] Park J-H. Recent progress in computer-generated holography for three-dimensional scenes[J]. Journal of Information Display, 2016, 18(1):1-12.
    [63] Abookasis D, Rosen J. Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints[J]. J Opt Soc Am A, 2003, 20(8):1537-1545.
    [64] Pei C, Yan X, Zhao K, et al. Method for generating full-parallax holographic stereograms without vergence-accommodation conflicts[J]. J Electron Imaging, 2014, 23(6):061109.
    [65] Su J, Yan X, Huang Y, et al. Resolution matching in laser direct printing of a computer-generated hologram[J]. J Opt Soc Am B, 2017, 34(5):B1-B8.
    [66] Jin Hongzhen, Li Yong, Wang Hui, et al. The design of auto-microcopy system for digital holograms[J]. Chinese Journal of Scientific Instrument, 2006, 27(3):233-236. (in Chinese)金洪震, 李勇, 王辉, 等. 数字全息图微缩输出系统设计[J]. 仪器仪表学报, 2006, 27(3):233-236.
    [67] Wakunami K, Yamaguchi M, Javidi B. High-resolution three-dimensional holographic display using dense ray sampling from integral imaging[J]. Opt Lett, 2012, 37(24):5103-5105.
    [68] Wakunami K, Yamashita H, Yamaguchi M. Occlusion culling for computer generated hologram based on ray-wavefront conversion[J]. Opt Express, 2013, 21(19):21811-21822.
    [69] Huang Yingqing, Zhao Kai, Jiang Xiaoyu, et al. Improvement of imaging resolution of holographic stereogram using wavefront plane[J]. Chinese Journal of Lasers, 2016, 43(2):0209002. (in Chinese)黄应清, 赵锴, 蒋晓瑜, 等. 用波前平面提高全息体视图成像分辨率[J]. 中国激光, 2016, 43(2):0209002.
    [70] Hoffman D M, Girshick A R, Akeley K, et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue[J]. J Vis, 2008, 8(3):1-30.
    [71] Shibata T, Kim J, Hoffman D M, et al. The zone of comfort:predicting visual discomfort with stereo displays[J]. J Vis, 2011, 11(8):11.
    [72] Yamaguchi M, Hoshino H, Honda T, et al. Phase-added stereogram:calculation of hologram using computer graphics technique[C]//SPIE, 1993, 1914:25-31.
    [73] Kang H, Yamaguchi T, Yoshikawa H, et al. Acceleration method of computing a compensated phase-added stereogram on a graphic processing unit[J]. Appl Opt, 2008, 47(31):5784-5789.
    [74] Kang H, Yamaguchi T, Yoshikawa H. Accurate phase-added stereogram to improve the coherent stereogram[J]. Appl Opt, 2008, 47(19):D44-D54.
    [75] Zhang H, Zhao Y, Cao L, et al. Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues[J]. Opt Express, 2015, 23(4):3901-3913.
    [76] Zhang H, Zhao Y, Cao L, et al. Layered holographic stereogram based on inverse Fresnel diffraction[J]. Appl Opt, 2016, 55(3):A154-A159.
    [77] Takaki Y, Nago N. Multi-projection of lenticular displays to construct a 256-view super multi-view display[J]. Opt Express, 2010, 18(9):8824-8835.
    [78] Pu Y, Dong J, Chen B, et al. Three-dimensional imaging with monocular cues using holographic stereography[J]. Opt Lett, 2010, 35(19):3279-3281.
    [79] Yoshikawa H, Yamaguchi T, Kajiro S. Direct fringe printer for computer-generated holograms:improvement of printing speed[C]//SPIE, 2013, 8644:86440X.
    [80] Yoshikawa H, Yamaguchi T. Computer-generated holograms for 3D display(Invited Paper)[J]. Chin Opt Lett, 2009, 7(12):1079-1082.
    [81] Yamaguchi T, Fujii T, Yoshikawa H. Fast calculation method for computer-generated cylindrical holograms[J]. Appl Opt, 2008, 47(19):D63-D70.
    [82] Yamaguchi T, Fujii T, Yoshikawa H. Disk hologram made from a computer-generated hologram[J]. Appl Opt, 2009, 48(34):H16-H22.
    [83] Yamaguchi T, Ozawa H, Yoshikawa H. Computer-generated Alcove hologram to display floating image with wide viewing angle[C]//SPIE, 2011, 7957:795719.
    [84] Li Y, Wang H, Ma L, et al. Three-dimensional imaging and display of real-existing scene using fringe[C]//SPIE, 2013, 8769:87691I.
    [85] Yamaguchi T, Miyamoto O, Yoshikawa H. Volume hologram printer to record the wavefront of three-dimensional objects[J]. Opt Eng, 2012, 51(7):075802.
    [86] Kim Y, Stoykova E, Kang H, et al. Seamless full color holographic printing method based on spatial partitioning of SLM[J]. Opt Express, 2015, 23(1):172-182.
    [87] Miyamoto O, Yamaguchi T, Yoshikawa H. The volume hologram printer to record the wavefront of a 3D object[C]//SPIE, 2012, 8281:82810N.
    [88] Kang H, Stoykova E, Kim Y, et al. Color holographic wavefront printing technique for realistic representation[J]. IEEE T Ind Inform, 2017, 12(4):1590-1598.
    [89] Kang H, Stoykova E, Kim Y, et al. Color wavefront printer with mosaic delivery of primary colors[J]. Opt Commun, 2015, 350:47-55.
    [90] Cao L, Wang Z, Zhang H, et al. Volume holographic printing using unconventional angular multiplexing for three-dimensional display[J]. Appl Opt, 2016, 55(22):6046-6051.
    [91] Wang Zheng, Cao Liangcai, Zhang Hao, et al. Three-dimensional display based on volume holography[J]. Chinese Journal of Lasers, 2015, 42(9):0909003. (in Chinese)王崝, 曹良才, 张浩, 等. 基于体全息的三维显示方法[J]. 中国激光, 2015, 42(9):0909003.
    [92] Wakunami K, Oi R, Senoh T, et al. Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction[C]//SPIE, 2016, 9867:98670J.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(539) PDF downloads(125) Cited by()

Related
Proportional views

Progress in holographic printing technique

doi: 10.3788/IRLA201847.0406008
  • 1. Academy of Army Armored Forces,Beijing 100072,China;
  • 2. Department of Information Communication,Academy of Army Armored Forces,Beijing 100072,China

Abstract: Holographic printing technique can achieve a true three-dimensional display of the scene well. Based on different sources and different recording methods of interference patterns, holographic printing techniques can be classified as synthetic holographic stereogram printing, computer-generated hologram printing, and wavefront printing. Synthetic holographic stereogram printing can't record the depth information of the three-dimensional scene accurately, so there occurs the vergence-accommodation conflicts during the reconstruction of the hologram. Computer-generated hologram printing can record and reconstruct the depth information of the scene accurately, and solve the vergence-accommodation conflicts. However, the hologram is only a thin transmission hologram which can't be reconstructed by white light. Wavefront printing can not only solve the vergence-accommodation conflicts, but also achieve a thick reflection hologram for white-light reconstruction with good observation effect. Principles of different holographic printing techniques were introduced, then research status of each technique was analyzed. Finally, the advantages and disadvantages of them were discussed to illustrate their own properties.

Reference (92)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return