Volume 47 Issue 6
Jul.  2018
Turn off MathJax
Article Contents

Yuan Jun, Zhang Zhengping, Xie Yiyang. Study of single-fundamental-mode square-lattice photonic crystal vertical cavity surface emitting laser[J]. Infrared and Laser Engineering, 2018, 47(6): 606005-0606005(6). doi: 10.3788/IRLA201847.0606005
Citation: Yuan Jun, Zhang Zhengping, Xie Yiyang. Study of single-fundamental-mode square-lattice photonic crystal vertical cavity surface emitting laser[J]. Infrared and Laser Engineering, 2018, 47(6): 606005-0606005(6). doi: 10.3788/IRLA201847.0606005

Study of single-fundamental-mode square-lattice photonic crystal vertical cavity surface emitting laser

doi: 10.3788/IRLA201847.0606005
  • Received Date: 2018-01-10
  • Rev Recd Date: 2018-02-03
  • Publish Date: 2018-06-25
  • The high single fundamental mode output power vertical cavity surface emitting laser (VCSEL) has been attracted many attention due to its important applications in the fields of optical communications, sensing, atomic frequency standard and opto-electronic hybrid integration. With suitable photonic crystal structure and distribution, the lateral modes of VCSEL can be effectively controlled by introducing the photonic crystal structure into the top distribution Bragg reflector (DBR). In this paper, square array photonic crystal structure was introduced into the VCSEL to control the transverse mode and single fundamental mode output power. The plane wave expansion and the full-vector three-dimensional finite difference time domain method (FDTD) method were used to analyze the photonic crystal structure and arrangement. The important parameters such as the period, the duty cycle and the etching depth of the square arrangement photonic crystal were obtained by using these methods. The high output power square lattice photonic crystal single fundamental mode VCSEL was reported. The single fundamental mode output power of the square lattice photonic crystal VCSEL is larger than 3 mW and the side mode suppression ratios (SMSRs) is more than 40 dB.
  • [1] Iga K, Surface emitting laser-It's birth and generation of new optoelectronics field[J]. IEEE J Sel Topics Quantum Electron, 2000, 6:1201-1215.
    [2] Larsson A. Advances in VCSELs for Communication and Sensing[J]. IEEE J Sel Top Quantum Electron, 2011, 1077-260X:1-16.
    [3] Weigl B, Grabherr M, Michalzik R, et al. High power single-mode selectively oxidized vertical-cavity surface emitting lasers[J]. IEEE Photonics Technology Letters, 1996, 8(8):971-973.
    [4] Morgan R A, Guth G D, Focht M W, et al. Transverse mode control of vertical-cavity top-surface-emitting lasers[J]. IEEE Photonics Technology Letters, 1993, 4(4):374-377.
    [5] Yokouchi N, Danner A J, Choquette K D. Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers[J]. IEEE J Sel Topics Quantum Electron, 2003, 9(5):1439-1445.
    [6] Tian Kun, Zou Yonggang, Ma Xiaohui, et al. Surface emitting distributed feedback semiconductor lasers[J]. Chinese Optics, 2016, 9(1):51-64. (in Chinese)田锟, 邹永刚, 马晓辉, 等. 面发射分布反馈半导体激光器[J]. 中国光学, 2016, 9(1):51-64.
    [7] Hong Kuobin, Yang Chunchieh, Lu Tienchang. Blue-Violet GaN-based photonic crystal surface emitting lasers[J]. Chinese Optics, 2014, 7(4):559-571. (in Chinese)洪国彬, 杨钧杰, 卢廷昌. 蓝紫光氮化镓光子晶体面射型激光器[J]. 中国光学, 2014, 7(4):559-571.
    [8] Liu Di, Ning Yongqiang, Zhang Jinlong, et al. High-power InGaAs/GaAsP strained quantum well vertical-cavity surface-emitting laser array[J]. Optics and Precision Engineering, 2012, 20(10):2147-2153. (in Chinese)刘迪, 宁永强, 张金龙, 等. 高功率InGaAs/GaAsP应变量子阱垂直腔面发射激光器列阵[J]. 光学精密工程, 2012, 20(10):2147-2153.
    [9] Xie Y Y, Kan Q, Xu C, et al. Single fundamental mode photonic crystal VCSEL with high power and low threshold current optimized by modal loss analysis[J]. Chinese Physics B, 2017, 26(1):014203.
    [10] Xie Y Y, Xu C, Kan Q, et al. A Single-fundamental-mode photonic crystal vertical cavity surface emitting laser[J]. Chinese Physics Letters, 2010, 27:024206.
    [11] Grabherr M, Jager R, Michalzik R, et al. Efficient single-mode oxide-confined GaAs VCSEL's emitting in the 850-nm wavelength regime[J]. IEEE Photonics Technology Letters, 1997, 10(10):1304-1306.
    [12] Yuan Wei, Zhang Jianqi, Qin Yuwei, et al. Near infrared spectral region photonic crystal band gaps and KTP defect[J]. Infrared and Laser Engineering, 2016, 45(1):0104005. (in Chinese)袁卫, 张建奇, 秦玉伟, 等. 近红外光谱区光子晶体禁带与KTP缺陷研究[J]. 红外与激光工程, 2016, 45(1):0104005.
    [13] Leisher P O, Danner A J, Raftery J J, et al. Proton implanted single mode holey vertical-cavity surface emitting lasers[J]. Electronics Letters, 2005, 41(18):1010-1011.
    [14] Mao Mingming, Xu Chen, Wei Simin, et al. The effects of proton implant energy on threshold and output power of vertical cavity surface emitting laser[J]. Acta Physica Sinica, 2012, 61(21):214207. (in Chinese)毛明明, 徐晨, 魏思民, 等. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响[J]. 物理学报, 2012, 61(21):214207.
    [15] Wang Baoqiang, Xu Chen, Liu Yingming, et al. Study on current spreading of photonic crystal vertical cavity surface emitting lasers[J]. Acta Physica Sinica, 2010, 59(12):8542-8547. (in Chinese)王宝强, 徐晨, 刘英明, 等. 光子晶体垂直腔面发射激光器的电流分布研究[J]. 物理学报, 2010, 59(12):8542-8547.
    [16] Xie Yiyang, Xu Chen, Kan Qiang, et al. VCSEL transverses mode control by 2D photonic crystal[J]. Infrared and Laser Engineering, 2010, 39(3):460-463. (in Chinese)解意洋, 徐晨, 阚强, 等. 二维光子晶体对面发射激光器横模控制研究[J]. 红外与激光工程, 2010, 39(3):460-463.
    [17] Jiang Guoqing, Xu Chen, Xie Yiyang, et al. Fabrication of Proton-implanted Photonic Crystal vertical cavity surface emitting laser[J]. Infrared and Laser Engineering, 2016, 45(12):1205001. (in Chinese)蒋国庆, 徐晨, 解意洋, 等. 质子注入型光子晶体垂直腔面发射激光器制备[J]. 红外与激光工程, 2016, 45(12):1205001.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(470) PDF downloads(46) Cited by()

Related
Proportional views

Study of single-fundamental-mode square-lattice photonic crystal vertical cavity surface emitting laser

doi: 10.3788/IRLA201847.0606005
  • 1. Science and Technology on Analog Integrated Circuit Laboratory,Chongqing 400060,China;
  • 2. Key Laboratory of Optoelectronics Technology,Ministry of Education,Beijing University of Technology,Beijing 100124,China

Abstract: The high single fundamental mode output power vertical cavity surface emitting laser (VCSEL) has been attracted many attention due to its important applications in the fields of optical communications, sensing, atomic frequency standard and opto-electronic hybrid integration. With suitable photonic crystal structure and distribution, the lateral modes of VCSEL can be effectively controlled by introducing the photonic crystal structure into the top distribution Bragg reflector (DBR). In this paper, square array photonic crystal structure was introduced into the VCSEL to control the transverse mode and single fundamental mode output power. The plane wave expansion and the full-vector three-dimensional finite difference time domain method (FDTD) method were used to analyze the photonic crystal structure and arrangement. The important parameters such as the period, the duty cycle and the etching depth of the square arrangement photonic crystal were obtained by using these methods. The high output power square lattice photonic crystal single fundamental mode VCSEL was reported. The single fundamental mode output power of the square lattice photonic crystal VCSEL is larger than 3 mW and the side mode suppression ratios (SMSRs) is more than 40 dB.

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return