Volume 47 Issue 8
Aug.  2018
Turn off MathJax
Article Contents

Jia Zhixu, Yao Chuanfei, Li Zhenrui, Jia Shijie, Zhao Zhipeng, Qin Weiping, Qin Guanshi. High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803004-0803004(11). doi: 10.3788/IRLA201847.0803004
Citation: Jia Zhixu, Yao Chuanfei, Li Zhenrui, Jia Shijie, Zhao Zhipeng, Qin Weiping, Qin Guanshi. High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803004-0803004(11). doi: 10.3788/IRLA201847.0803004

High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)

doi: 10.3788/IRLA201847.0803004
  • Received Date: 2018-04-05
  • Rev Recd Date: 2018-05-03
  • Publish Date: 2018-08-25
  • High power all-fiber mid-infrared(MIR) supercontinuum(SC) light sources have attracted much attention for their wide applications in fundamental research, environments, medicine, and national defense security. Currently, such SC light sources are mainly based on fluoride glass fibers. While the relative low damage threshold and poor chemical durability of the fluoride glass fibers influenced their applications in practical high power MIR SC light sources. For further improving the performances of the MIR SC light sources and developing practical high power MIR SC light source, a fluorotellurite glass(TeO2-BaF2-Y2O3, TBY) with good thermal and chemical stabilities was developed, and fluorotellurite glass fibers was fabricated based on it. By using the fluorotellurite glass fibers as the nonlinear media, coherent SC generation from 1.4-4 m and broadband SC generation from 0.4-5.14 m were obtained in our experiments. Moreover, SC light source with an average power of 10 W was also obtained, and the spectral range covered 947-3 934 nm.
  • [1] Alfano R. The Supercontinuum Laser Source[M]. New York:Springer, 2006.
    [2] Dudley J, Taylor R. Supercontinuum Generation in Optical Fibers[M]. New York:Cambridge University Press, 2010.
    [3] Wei Zhiyi. The 2005 Nobel prize in physics and optical frequency comb techniques[J]. Physics, 2006, 35(3):213-217. (in Chinese)魏志义. 2005年诺贝尔物理学奖与光学频率梳[J]. 物理,2006, 35(3):213-217.
    [4] Hartl I, Li X D, Chudoba C, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Optics Letters, 2001, 26(9):608-610.
    [5] Wildanger D, Rittweger E, Kastrup L, et al. STED microscopy with a supercontinuum laser source[J]. Optics Express, 2008, 16(13):9614-9621.
    [6] Brown D M, Shi K, Liu Z, et al. Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents[J]. Optics Express, 2008, 16(12):8457-8471.
    [7] Wallace J. IR supercontinuum laser helps defend helicopters[N]. Laser Focus World, 2010, Sept 3.
    [8] Qian Liejia. Development and integration of wide tunable mid infrared femtosecond and narrow band long pulse laser devices[J]. Infrared and Laser Engineering, 2006, 35(z3):43. (in Chinese)钱列加. 宽调谐中红外飞秒及窄带长脉冲激光器件的研制和集成[J]. 红外与激光工程, 2006, 35(z3):43.
    [9] Deng Ying, Zhu Qihua, Zeng Xiaoming, et al. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser Optoelectronics Progress, 2006, 43(8):21-26. (in Chinese)邓颖, 朱启华, 曾小明, 等. 超短中红外激光脉冲的产生及其发展状况[J]. 激光与光电子进展, 2006, 43(8):21-26.
    [10] Chen K, Alam S U, Price J H V, et al. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power[J]. Optics Express, 2010, 18(6):5426-5432.
    [11] Sanghera J S, Aggarwal I D, Busse L E, et al. Chalcogenide optical fibers target mid-IR applications[J]. Laser Focus World, 2005, 41(4):83-87.
    [12] Harbold J M, Ilday F O, Wise F W, et al. Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching[J]. IEEE Photonics Technology Letters, 2002, 14(6):822-824.
    [13] Slusher R E, Lenz G, Hodelin J, et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers[J]. Journal of the Optical Society of America B-Optical Physics, 2004, 21(6):1146-1155.
    [14] Feng X, Mairaj A K, Hewak D W, et al. Nonsilica glasses for holey fibers[J]. Journal of Lightwave Technology, 2005, 23(6):2046-2054.
    [15] Petersen C R, Mller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11):830-834.
    [16] Cheng T L, Nagasaka K, Tuan T H, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1m in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9):2117-2120.
    [17] Zhao Z M, Wang X S, Dai S X, et al. 1.5-14m midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(22):5222-5225.
    [18] Zhao Z M, Wu B, Wang X S, et al. Mid-infrared supercontinuum covering 2.0-16m in a low-loss telluride single-mode fiber[J]. Laser Photonics Reviews, 2017, 11(2):1700005.
    [19] Qin G S, Yan X, Kito C, et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28m in a fluoride fiber[J]. Applied Physics Letters, 2009, 95(16):584.
    [20] Xia C N, Xu Z, Islam M N, et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4m with direct pulse pattern modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2):422-434.
    [21] Yang W, Zhang B, Xue G, et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2m MOPA system[J]. Optics Letters, 2014, 39(7):1849-1852.
    [22] Liu K, Liu J, Shi H X, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 2014, 22(20):24384-24391.
    [23] Liu K, Liu J, Shi H X, et al. 24.3 W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier[C]//Advanced Solid State Lasers, 2014, AM3A.6.
    [24] Zheng Z J, Ouyang D Q, Zhao J Q, et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photonics Research, 2016, 4(4):135-139.
    [25] Yin K, Zhang B, Yang L Y, et al. 15.2 W spectrally flat all-fiber supercontinuum laser source with 1 W power beyond 3.8m[J]. Optics Letters, 2017, 42(12):2334-2337.
    [26] Poulain M, Poulain M, Lucas J. Verres fluores au tetrafluorure de zirconium proprietes optiques d'un verre dope au Nd3+[J]. Materials Research Bulletin, 1975, 10(4):243-246.
    [27] Zhu X, Peyghambarian N. High-power ZBLAN glass fiber lasers:review and prospect[J]. Advances in OptoElectronics, 2010(1687-563X):149-154.
    [28] Wang J S, Vogel E M, Snitzer E. Tellurite glass:a new candidate for fiber devices[J]. Optical Materials, 1994, 3(3):187-203.
    [29] Ghosh G. Sellmeier coefficients and chromatic dispersions for some tellurite glasses[J]. Journal of the American Ceramic Society, 1995, 78(10):2828-2830.
    [30] Domachuk P, Wolchover N A, Cronin-Golomb M, et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 2008, 16(10):7161-7168.
    [31] Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5m[C]//SPIE 2013, 8898:889808.
    [32] Shi H X, Feng X, Tan F Z, et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optical Materials Express, 2016, 6(12):3967-3976.
    [33] Yang L, Zhang B, Yin K, et al. 0.6-3.2m supercontinuum generation in a stepindex germania-core fiber using a 4.4 kW peak power pump laser[J]. Optics Express, 2016, 13(24):12600-12606.
    [34] Yin K, Zhang B, Yao J, et al. 1.9-3.6m supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio[J]. Optics Letters, 2016, 41(21):5067-5070.
    [35] Yin K, Zhang B, Yang L, et al. 30 W monolithic 2-3m supercontinuum laser[J]. Photonics Research, 2018, 6(2):123-126.
    [36] O'donnell M D, Miller C A, Furniss D, et al. Fluorotellurite glasses with improved mid-infrared transmission[J]. Journal of Non-Crystalline Solids, 2003, 331(1-3):48-57.
    [37] Liao G H, Chen Q P, Xing J J, et al. Preparation and characterization of new fluorotellurite glasses for photonics application[J]. Journal of Non-Crystalline Solids, 2009, 355(7):447-452.
    [38] O'donnell M D, Richardson K, Stolen R, et al. Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers:Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization[J]. Journal of the American Ceramic Society, 2007, 90(5):1448-1457.
    [39] Wang R, Meng X, Yin F, et al. Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7m laser applications[J]. Optical Material Express, 2013, 3(8):1127-1136.
    [40] de Sousa D F, Zonetti L F C, Bell M J V, et al. On the observation of 2.8m emission from diode-pumped Er3+-and Yb3+-doped low silica calcium aluminate glasses[J]. Applied Physics Letters, 1999, 74(7):908-910.
    [41] Yao C, He C, Jia Z, et al. Holmium-doped fluorotellurite microstructured fibers for 2.1m lasing[J]. Optics Letters, 2015, 40(20):4695-4698.
    [42] Wang F, Wang K, Yao C, et al. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation[J]. Optics Letters, 2016, 41(3):634-637.
    [43] Bei J F, Foo H T C, Qian G J, et al. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water[J]. Optical Materials Express, 2014, 4(6):1213-1226.
    [44] Dudley J M, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Optics Letters, 2002, 27(13):1180-1182.
    [45] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4):1135-1184.
    [46] Savelii I, Desevedavy F, Jules J C, et al. Management of OH absorption in tellurite optical fibers and related supercontinuum generation[J]. Optical Materials, 2013, 35(8):1595-1599.
    [47] Jia Z, Yao C, Jia S, et al. Supercontinuum generation covering the entire transmission window of 0.4-5m in a tapered ultra-high NA all-solid fluorotellurite fiber[J]. Laser Physics Letters, 2018, 15:025102.
    [48] Jia Z, Yao C, Jia S, et al. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber[J]. Applied Physics Letters, 2017, 110:261106.
    [49] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber[J]. Applied Physics B-Lasers and Optics, 2003, 77(2-3):269-277.
    [50] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber[J]. Physical Review Letters, 2003, 90(11):113904.
    [51] Klimczak M, Siwicki B, Skibinski P, et al. Coherent supercontinuum generation up to 2.3m in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion[J]. Optics Express, 2014, 22(15):18824-18832.
    [52] Li N, Wang F, Yao C, et al. Coherent supercontinuum generation from 1.4 to 4m in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser[J]. Applied Physics Letters, 2017, 110:061102.
    [53] Zhan H, Shi T F, Zhang A D, et al. Nonlinear characterization on mid-infrared fluorotellurite glass fiber[J]. Materials Letters, 2014, 120:174-176.
    [54] Chen Z, Taylor A J, Efimov A. Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper[J]. Optics Express, 2009, 17(7):5852-5860.
    [55] Yao C, Jia Z, Li Z, et al. 10-W-level mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. (Submitted).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(545) PDF downloads(82) Cited by()

Related
Proportional views

High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)

doi: 10.3788/IRLA201847.0803004
  • 1. State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering,Jilin University,Changchun 130012,China

Abstract: High power all-fiber mid-infrared(MIR) supercontinuum(SC) light sources have attracted much attention for their wide applications in fundamental research, environments, medicine, and national defense security. Currently, such SC light sources are mainly based on fluoride glass fibers. While the relative low damage threshold and poor chemical durability of the fluoride glass fibers influenced their applications in practical high power MIR SC light sources. For further improving the performances of the MIR SC light sources and developing practical high power MIR SC light source, a fluorotellurite glass(TeO2-BaF2-Y2O3, TBY) with good thermal and chemical stabilities was developed, and fluorotellurite glass fibers was fabricated based on it. By using the fluorotellurite glass fibers as the nonlinear media, coherent SC generation from 1.4-4 m and broadband SC generation from 0.4-5.14 m were obtained in our experiments. Moreover, SC light source with an average power of 10 W was also obtained, and the spectral range covered 947-3 934 nm.

Reference (55)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return