Volume 47 Issue 8
Aug.  2018
Turn off MathJax
Article Contents

Wang Yufei, Li Lei, Zhao Luming. Research progress of divided pulse amplification technology in ultrafast fiber lasers[J]. Infrared and Laser Engineering, 2018, 47(8): 803010-0803010(10). doi: 10.3788/IRLA201847.0803010
Citation: Wang Yufei, Li Lei, Zhao Luming. Research progress of divided pulse amplification technology in ultrafast fiber lasers[J]. Infrared and Laser Engineering, 2018, 47(8): 803010-0803010(10). doi: 10.3788/IRLA201847.0803010

Research progress of divided pulse amplification technology in ultrafast fiber lasers

doi: 10.3788/IRLA201847.0803010
  • Received Date: 2018-04-05
  • Rev Recd Date: 2018-05-14
  • Publish Date: 2018-08-25
  • With the rapid development of high power ultrafast fiber lasers, divided-pulse amplification (DPA) technology has attracted extensive concerns. DPA can be implemented through birefringent crystals or freespace delay lines. By combining with the techniques of chirped pulse amplification, spatial beam splitting and photonic crystal fiber amplification, DPA can be applied to coherent beam combining and nonlinear compression in order to increase both the pulse energy and peak power of ultrafast fiber lasers. The research progress of DPA in ultrafast fiber lasers was reviewed. Different system structures of DPA in the applications of coherent beam combining were analyzed. The optimization and further development of DPA was also prospected.
  • [1] Limpert J, Deguil-Robin N, Manek-Hnninger I, et al. High-power rod-type photonic crystal fiber laser[J]. Optics Express, 2005, 13(4):1055-1058.
    [2] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7(12):868-874.
    [3] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 2011, 55(6):447-449.
    [4] Zhou S, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 2007, 32(7):871-873.
    [5] Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 2012, 37(2):253-255.
    [6] Roither S, Verhoef A, Mucke O D, et al. Sagnac-interferometer multipass-loop amplifier[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on. IEEE, 2008:1-2.
    [7] Lesparre F, Gomes J T, Dlen X, et al. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 2016, 41(7):1628.
    [8] Bai Y S, Chen X T, Chen J W, et al. Numerical study on picosecond pulse amplifier based on divided pulse amplification technique[J]. Chinese Journal of Lasers, 2017(2):201021. (in Chinese)
    [9] Limpert J. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5):268-277.
    [10] Daniault L, Hanna M, Papadopoulos D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Optics Express, 2012, 20(19):21627.
    [11] Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped-and divided-pulse amplification system[C]//Lasers and Electro-Optics Pacific Rim. IEEE, 2013:1-2.
    [12] Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped-and divided-pulse Sagnac femtosecond fiber amplifier[J]. Optics Letters, 2015, 40(1):89.
    [13] Pouysegur J, Guichard F, Zaouter Y, et al. Hybrid high-energy high-power pulsewidth-tunable picosecond source[J]. Optics Letters, 2015, 40(22):5184.
    [14] Kienel M, Klenke A, Eidam T, et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept[J]. Optics Express, 2013, 21(23):29031-29042.
    [15] Kienel M, Klenke A, Eidam T, et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Optics Letters, 2014, 39(4):1049-1052.
    [16] Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 2006, 14(25):12188.
    [17] Limpert J, Stutzki F, Jansen F, et al. Yb-doped large-pitch fibres:effective single-mode operation based on higher-order mode delocalization[J]. Light:Science Applications, 2012, 1(4):e8.
    [18] Tnnermann A, Klenke A, Limpert J, et al. Multidimensional coherent pulse addition of ultrashort laser pulses[J]. Optics Letters, 2015, 40(4):522-525.
    [19] Eidam T, Kienel M, Klenke A, et al. Divided-pulse amplification for terawatt-class fiber lasers[J]. European Physical Journal Special Topics, 2015, 224(13):2567-2571.
    [20] Kienel M, Mller M, Klenke A, et al. 12 mJkW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14):3343.
    [21] Jacqmin H, Jullien A, Mercier B, et al. Passive coherent combining of CEP-stable few-cycle pulses from a temporally divided hollow fiber compressor[J]. Optics Letters, 2015, 40(5):709.
    [22] Klenke A, Kienel M, Eidam T, et al. Divided-pulse nonlinear compression[J]. Optics Letters, 2013, 38(22):4593-4596.
    [23] Guichard F, Zaouter Y, Hanna M, et al. Energy scaling of a nonlinear compression setup using passive coherent combining[J]. Optics Letters, 2013, 38(21):4437.
    [24] Hao Q, Zhang Q, Sun T, et al. Divided-pulse nonlinear amplification and simultaneous compression[J]. Applied Physics Letters, 2015, 106(10):16671-16676.
    [25] Wang C, Li W, Li L, et al. Femtosecond Er-doped fiber laser based on divided-pulse nonlinear amplification[J]. Journal of Optics, 2016, 18(2):025503.
    [26] Hao Q, Wang Y, Liu T, et al. Divided-pulse nonlinear amplification at 1.5m[J]. IEEE Photonics Journal, 2016, 8(5):1-8.
    [27] Yu J, Feng Y, Duan L N, et al. Quasi-all-fiber high-efficiency divided chirp-pulse amplification system based on active controlling[J]. IEEE Photonics Journal, 2016, 8(1):1-9.
    [28] Stark H, Mller M, Kienel M, et al. Electro-optically controlled divided-pulse amplification[J]. Optics Express, 2017, 25(12):13494.
    [29] Zaouter Y, Guichard F, Hoenninger C, et al. High average power 600J ultrafast fiber laser for micromachining application[J]. Journal of Laser Applications, 2015, 27(S2):S29301.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(482) PDF downloads(67) Cited by()

Related
Proportional views

Research progress of divided pulse amplification technology in ultrafast fiber lasers

doi: 10.3788/IRLA201847.0803010
  • 1. Jiangsu Key Laboratory of Advanced Laser Materials and Devices,Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry,School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou 221116 China;
  • 2. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,Shenzhen University,Shenzhen 518060,China

Abstract: With the rapid development of high power ultrafast fiber lasers, divided-pulse amplification (DPA) technology has attracted extensive concerns. DPA can be implemented through birefringent crystals or freespace delay lines. By combining with the techniques of chirped pulse amplification, spatial beam splitting and photonic crystal fiber amplification, DPA can be applied to coherent beam combining and nonlinear compression in order to increase both the pulse energy and peak power of ultrafast fiber lasers. The research progress of DPA in ultrafast fiber lasers was reviewed. Different system structures of DPA in the applications of coherent beam combining were analyzed. The optimization and further development of DPA was also prospected.

Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return