Volume 47 Issue 8
Aug.  2018
Turn off MathJax
Article Contents

Huang Zhiguo, Wang Jianli, Wang Haojing, Li Hongzhuang, Yin Limei. Analysis and verification of infrared K band daytime detection ability[J]. Infrared and Laser Engineering, 2018, 47(8): 804001-0804001(7). doi: 10.3788/IRLA201847.0804001
Citation: Huang Zhiguo, Wang Jianli, Wang Haojing, Li Hongzhuang, Yin Limei. Analysis and verification of infrared K band daytime detection ability[J]. Infrared and Laser Engineering, 2018, 47(8): 804001-0804001(7). doi: 10.3788/IRLA201847.0804001

Analysis and verification of infrared K band daytime detection ability

doi: 10.3788/IRLA201847.0804001
  • Received Date: 2018-03-10
  • Rev Recd Date: 2018-04-20
  • Publish Date: 2018-08-25
  • The key technology of space target detection was studied during daytime, including analysis of atmospheric transmittance, sky background radiation measurement, detection ability calculation. Infrared K band spectrum was applied to the 1.23 m large aperture telescope to verify the key theoreties. Experiment shows that after optimization the limit detection of infrared optoelectronic system is 10.38 magnitude at 30 pitching angle and the detection ability increases 24.9% than before optimization. This research has a positive significance for mid-high orbit satellite detection throughout the day.
  • [1] Yin Limei, Liu Yingqi, Li Hongwen. Cold optics technology to achieve high-accuracy infrared detection[J]. Infrared Technology, 2013, 35(9):535-540. (in Chinese)殷丽梅, 刘莹奇, 李洪文. 实现高精度红外探测的冷光学技术[J]. 红外技术, 2013, 35(9):535-540.
    [2] Wang Weiguo. Research of space object detecting under bright background[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2005. (in Chinese)王伟国. 空间目标白天光电探测技术研究[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2005.
    [3] Zhu Qixiang. Detection of celestial objects by CCD camera in the daytime and related experiments[J]. Opto-electronic Engineering, 1995, 22(6):1-10. (in Chinese)朱耆祥. 白天用CCD摄象机对天体目标的探测及实验[J]. 光电工程, 1995, 22(6):1-10.
    [4] Li Chaohong, Xian Hao, Jiang Wenhan, et al. Analysis of wavefront measuring method for daytime adaptive optics[J]. Acta Physica Sinica, 2007, 56(7):4289-4296. (in Chinese)李超宏, 鲜浩, 姜文汉,等. 用于白天自适应光学的波前探测方法分析[J]. 物理学报, 2007, 56(7):4289-4296.
    [5] Zhang Luqing. Research on SWIR star detection technology in daytime[J]. Optics Optoelectrinic Technology, 2015, 13(4):61-64. (in Chinese)张路青. 短波红外白天测星技术研究[J]. 光学与光电技术, 2015, 13(4):61-64.
    [6] Wei Heli, Dai Congming. Research of atmospheric transfer correction in radiance measurement:atmospheric transfer correction system[J]. Infrared and Laser Engineering, 2014, 43(4):884-890. (in Chinese)魏合理, 戴聪明. 辐射特性测量大气传输修正研究:大气传输修正系统[J]. 红外与激光工程, 2014, 43(4):884-890.
    [7] Xu Min, Wang Jianli, Chen Tao. Study on application of short wave infrared to detecting satellites in the daytime[J]. Optical Technique, 2008, 34(2):277-280. (in Chinese)续敏, 王建立, 陈涛. 短波红外用于白天卫星探测的研究[J]. 光学技术, 2008, 34(2):277-280.
    [8] Zhang Jihua, Yao Dongsheng, Tan Bin. Analysis on effect factors of ground-based electro-optic system detection ability on space object[J]. Acta Optica Sinica, 2008, 28(6):1178-1182. (in Chinese)张己化, 姚东升, 谈斌. 地基光电系统空间目标探测影响因素分析[J]. 光学学报, 2008, 28(6):1178-1182.
    [9] Lu Dong. Detection capability of space object in daytime[J]. Modern Electronics Technique, 2011, 34(16):176-178. (in Chinese)卢栋. 空间目标白天光电探测能力分析[J]. 现代电子技术, 2011, 34(16):176-178.
    [10] Liu Junchi, Li Hongwen, Wang Jianli, et al. Measurement of mid-infrared total atmospheric transmittance and its error analysis[J]. Optics and Precision Engineering, 2015, 23(6):1547-1557. (in Chinese)刘俊池, 李洪文, 王建立, 等. 中波红外整层大气透过率测量及误差分析[J]. 光学精密工程, 2015, 23(6):1547-1557.
    [11] Hanson C M. Infrared detector arrays:US, US 4792681 A[P]. 1988.
    [12] Fan Wei, Wang Yi, Rao Ruizhong. Wavelength band selection method for taget detection based on character of atmosphere radiation[J]. Infrared and Laser Engineering, 2005, 34(2):177-182. (in Chinese)范伟, 王毅, 饶瑞中. 根据大气辐射特征进行目标探测的波段选择[J]. 红外与激光工程, 2005, 34(2):177-182.
    [13] Feng Xiaoyong, Zhao Zhonghua, Liu Xinming. Video image processing of real-time star detection in daylight[J]. Chinese Optics, 2011, 4(6):622-628. (in Chinese)冯小勇, 赵忠华, 刘新明. 日间恒星实时探测的视频图像处理[J]. 中国光学, 2011, 4(6):622-628.
    [14] Wang Haojing, Wu Liang, Wang Jianli, et al. Low SNR star detection by shift-and-add methond in daytime[J]. Chinese Optics, 2016, 9(4):405-414. (in Chinese)王昊京, 吴量, 王建立, 等. 移位相加法日间探测低信噪比恒星[J]. 中国光学, 2016, 9(4):405-414.
    [15] Jim K, Gibson B, Pier E. Daytime sky brightness modeling of haleakala along the GEO belt[C]//Advanced Maui Optical and Space Surveillance Technologies Conference, 2011:E63.
    [16] Mu Da, Li Quanyong, Dong Jianing. Analysis on ground-based infrared detection system detecting the infrared magnitude of space targets[J]. Infrared and Laser Engineering, 2011, 40(9):1609-1613. (in Chinese)牟达, 李全勇, 董家宁. 地基红外系统探测空间目标红外星等分析[J]. 红外与激光工程, 2011, 40(9):1609-1613.
    [17] Nyquist H. Thermal agitation of electric charge in conductors[J]. Phys Rev, 1928, 32(1):110-113.
    [18] Van der Ziel A. Fluctuaion and Holes in Semiconductors[M]. London:Butterworths Sci Pub, 1959.
    [19] Wei Heli, Chen Xiuhong, Yu Kai, et al. Analysis of the detectable stellar magnitude limit using CCD camera in daytime sky background[J]. High Power Laser and Particle Beams, 2007, 19(2):187-192. (in Chinese)魏合理, 陈秀红, 余凯, 等. 白天CCD观星可探测极限星等值分析[J]. 强激光与粒子束, 2007, 19(2):187-192.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(328) PDF downloads(44) Cited by()

Related
Proportional views

Analysis and verification of infrared K band daytime detection ability

doi: 10.3788/IRLA201847.0804001
  • 1. Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;
  • 2. University of Chinese Academy of Sciences,Beijing 100049,China

Abstract: The key technology of space target detection was studied during daytime, including analysis of atmospheric transmittance, sky background radiation measurement, detection ability calculation. Infrared K band spectrum was applied to the 1.23 m large aperture telescope to verify the key theoreties. Experiment shows that after optimization the limit detection of infrared optoelectronic system is 10.38 magnitude at 30 pitching angle and the detection ability increases 24.9% than before optimization. This research has a positive significance for mid-high orbit satellite detection throughout the day.

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return