Volume 47 Issue 10
Oct.  2018
Turn off MathJax
Article Contents

Pei Li, Wang Jianshuai, Zheng Jingjing, Ning Tigang, Xie Yuheng, He Qian, Li Jing. Research on specialty and application of space-division-multiplexing fiber[J]. Infrared and Laser Engineering, 2018, 47(10): 1002001-1002001(12). doi: 10.3788/IRLA201847.1002001
Citation: Pei Li, Wang Jianshuai, Zheng Jingjing, Ning Tigang, Xie Yuheng, He Qian, Li Jing. Research on specialty and application of space-division-multiplexing fiber[J]. Infrared and Laser Engineering, 2018, 47(10): 1002001-1002001(12). doi: 10.3788/IRLA201847.1002001

Research on specialty and application of space-division-multiplexing fiber

doi: 10.3788/IRLA201847.1002001
  • Received Date: 2018-08-12
  • Rev Recd Date: 2018-09-18
  • Publish Date: 2018-10-25
  • With the development of 5G, internet of things and big data, optical communication networks, as the backbone of data transmission, are imperative to expand their capacity, improve transmission stability and network intelligence. Space-division multiplexing technology, which is mainly based on multi-core fiber, few-mode fiber and few-mode-multi-core fiber, is considered to be the key to improve the capacity of optical communication network system and build next-generation optical communication networks. Based on the reported experimental results, the application of space-division multiplexed fiber was mainly studied in optical transmission, high-performance laser and fiber sensing. It is fully demonstrated that the space-division multiplexed fibers are important to the modern optical fiber communication system. It will be a hot spot and should be drawn much attention for the evolving optical communication.
  • [1] Takenaga Katsuhiro, Tanigawa Shoji, Guan Ning, et al. Reduction of crosstalk by quasi-homogeneous solid multi-core fiber[C]//Optical Fiber Communication Conference, 2010:OWK7.
    [2] Gao Song, Liu Yan, Chen Runqiu, et al. Study on mode multiplexing used in space-division multiplexing[J]. Laser and Infrared, 2014, 44(4):424-428. (in Chinese)
    [3] Chen Wei, Yuan Jian, He Zuowei, et al. The research progress of high-end optical fiber technologies for large capacity communication[J]. Study on Optical Communications, 2017, 44(1):27-29. (in Chinese)
    [4] Chandrasekhar S, Gnauck A H, Liu Xiang, et al. WDM/SDM transmission of 10128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40, 320 kmb/s/Hz[J]. Optics Express, 2012, 20(2):706-711.
    [5] Chen H, Van Uden R, Okonkwo C, et al. Compact spatial multiplexers for mode division multiplexing[J]. Optics Express, 2014, 22(26):31582-31594.
    [6] Takenaga Katsuhiro. Reduction of crosstalk by trench-assisted multi-core fiber[C]//Optical Fiber Communication Conference, 2011:OWJ4.
    [7] Saitoh Kunimasa, Matsuo Shoichiro. Multicore fiber technology[J]. Journal of Lightwave Technology, 2016, 34(1):55-66.
    [8] Zheng Siwen, Lin Zhen, Ren Guobin, et al. Design and analysis of novel multi-core dual-mode large-mode-area optical fiber[J]. Acta Physica Sinica, 2013, 62(4):044224. (in Chinese)郑斯文, 林桢, 任国斌, 等. 一种新型多芯-双模-大模场面积光纤的设计和分析[J]. 物理学报, 2013, 62(4):044224.
    [9] Lin Zhen, Zheng Siwen, Ren Guobin, et al. Characterization and comparison of 7-core and 19-core large-mode-area few-mode fiber[J]. Acta Physica Sinica, 2013, 62(6):064214. (in Chinese)林桢, 郑斯文, 任国斌, 等. 七芯及十九芯大模场少模光纤的特性研究和比对分析[J]. 物理学报, 2013, 62(6):064214.
    [10] Takenaga Katsuhiro, Arakawa Yoko, Sasaki Yusuke, et al. A large effective area multi-core fiber with an optimized cladding thickness[J]. Optics Express, 2011, 19(26):B543-B550.
    [11] Le Noane G, Boscher D, Grosso P, et al. Ultra high density cables using a new concept of bunched multicore monomode fibers:A key for the future FTTH networks[C]//Proceedings of the 43rd International Wire Cable Symposium (IWCS), 1994:203-210.
    [12] Zhu B, Taunay T F, Yan M F, et al. Seven-core multicore fiber transmissions for passive optical network[J]. Optics Express, 2010, 18(11):11117-11122.
    [13] Liu Xiang, Chandrasekhar S, Chen X, et al. 1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency.[J]. Optics Express, 2011, 19(26):B958-B964.
    [14] Zhu B, Taunay T F, Fishteyn M, et al. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber[J]. Optics Express, 2011, 19(17):16665-16671.
    [15] Hayashi Tetsuya, Taru Toshiki, Shimakawa Osamu, et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber[J]. Optics Express, 2011, 19(17):16576-16592.
    [16] Igarashi Koji, Takeshima Koki, Tsuritani Takehiro, et al. 110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA[J]. Optics Express, 2013, 21(15):18053-18060.
    [17] Kobayashi T, Takara H, Sano A, et al. 2344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation[C]//39th European Conference and Exhibition on Optical Communications (ECOC 2013), 2013:PD3E4.
    [18] Sano Akihide, Takara Hidehiko, Kobayashi Takayuki, et al. 409-Tb/s+409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving[J]. Optics Express, 2013, 21(14):16777-16783.
    [19] Turukhin A, Sinkin O V, Batshon H G, et al. 105.1 Tb/s power-efficient transmission over 14350 km using a 12-core fiber[C]//Optical Fiber Communications Conference and Exhibition, 2016:Th4C.1.
    [20] Mizuno T, Shibahara K, Ono H, et al. 32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line[C]//Optical Fiber Communications Conference Postdeadline Papers, 2016:Th5C.3.
    [21] Chen Heming, Zhuang Yuyang. Research progess on key technologies in mode division multiplexing system[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2018, 38(1):37-44. (in Chinese)陈鹤鸣, 庄煜阳. 模分复用系统关键技术研究进展[J]. 南京邮电大学学报(自然科学版), 2018, 38(1):37-44.
    [22] Sakaguchi J, Awaji Y, Imamura K, et al. 19-core fiber transmission of 19100172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s[C]//National Fiber Optic Engineers Conference, 2011:PDPC2.
    [23] Ryf Roland, Randel Sebastian, Gnauck Alan H, et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 66 MIMO processing[J]. Journal of Lightwave Technology, 2012, 30(4):521-531.
    [24] Ryf Roland, Fontaine Nicolas K, Mestre Miquel A, et al. 1212 MIMO transmission over 130-km few-mode fiber[J]. Frontier in Optics, 2012:FW6C.4.
    [25] Sleiffer Vincent A, Leoni Paolo, Jung Yongmin, et al. Ultra-high capacity transmission with few-mode silica and hollow-core photonic bandgap fibers[C]//Optical Fiber Communications Conference and Exhibition, 2014:Tu2J.3.
    [26] Ren Fang, Yu Jinyi, Li Juhao, et al. Experimental demonstration of 3-mode MDM-PON transmission over 7.4-km low-mode-crosstalk FMF[C]//Optical Fiber Communications Conference and Exhibition, 2016:W2A.58.
    [27] Matsuo Shoichiro, Takenaga Katsuhiro, Sasaki Yusuke, et al. High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems[J]. Journal of Lightwave Technology, 2016, 34(6):1464-1475.
    [28] Pepeljugoski P, Doany F, Kuchta D M, et al. Connector performance analysis for D-shaped multi-core multi mode fiber[C]//Optical Fiber Communications Conference and Exhibition, 2014:Th4J.4.
    [29] Nakazawa M. Ultrahigh spectral efficiency systems-pushing the limits of multi-level modulation, multi-core fiber, and multi-mode control[C]//Optical Fibre Technology, OptoElectronics and Communication Conference and Australian Conference on, 2014:597-599.
    [30] Igarashi Koji, Igarashi Koji, Igarashi Koji. Ultra-high capacity transmission based on ultra-dense SDM/WDM techniques[C]//Asia Communications and Photonics Conference, 2016:AF1D.3.
    [31] Chi Nan, Zhang Junwen, Shao Yufeng. Theoretical and simulation analysis of a novel multiple-input multiple-output scheme over multimode fiber links with dual restricted launch techniques[J]. Optical Engineering, 2012, 51(6):5002.
    [32] Tsuchida Y, Maeda K, Sugizaki R. Multicore EDFA for space division multiplexing[C]//Photonics Conference, 2014:269-270.
    [33] Kanno Atsushi, Sakaguchi Jun, Watanabe Masayuki, et al. Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber[J]. Journal of Lightwave Technology, 2012, 30(4):658-665.
    [34] Takara H, Ono H, Abe Y, et al. 1000-km 7-core fiber transmission of 1096-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber[J]. Optics Express, 2012, 20(9):10100-10105.
    [35] Sakaguchi J, Klaus W, Mendinueta J D, et al. Realizing a 36-core, 3-mode fiber with 108 spatial channels[C]//Optical Fiber Communications Conference and Exhibition, 2015:Th5C.2.
    [36] Soma D, Igarashi K, Wakayama Y, et al. 2.05 Peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band[C]//European Conference on Optical Communication (ECOC), 2015:7341686.
    [37] Qi Yanhui, Sun Jiang, Kang Zexin, et al. Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating[J]. Optical Fiber Technology, 2016, 29:70-73.
    [38] Qi Yanhui, Kang Zexin, Sun Jiang, et al. Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure[J]. Optics Laser Technology, 2016, 81:26-32.
    [39] Zheng Jingjing, Pei Li, Ning Tigang, et al. Matching optimization for SFS-structured interferometers with step-index fibers[J]. Optics Express, 2018, 26(7):9182-9193.
    [40] Cheo P K, Liu A, King G G. A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array[J]. IEEE Photonics Technology Letters, 2001, 13(5):439-441.
    [41] Michaille L, Bennett C R, Taylor D M, et al. Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area[J]. Optics Letters, 2005, 30(13):1668-1670.
    [42] Michaille L, Bennett C R, Taylor D M, et al. Multicore photonic crystal fiber lasers for high power/energy applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2):328-336.
    [43] Prudenzano F, Mescia L, Di Tommaso A, et al. Design and refinement of rare earth doped multicore fiber lasers[J]. Optical Materials, 2013, 35(11):1941-1946.
    [44] Rigaud P, Kermene V, Simos C, et al. Dual-wavelength synchronous ultrashort pulses from a mode-locked Yb-doped multicore fiber laser with spatially dispersed gain[J]. Optics Express, 2015, 23(19):25308-25315.
    [45] Ji Junhua, Raghuraman Sidharthan, Huang Xiaosheng, et al. 115 W large-mode-area multi-core fiber laser with all solid structure[C]//Conference on Lasers and Electro-Optics, 2018:STu3K.5.
    [46] Huo Yanming, Cheo Peter K, King George G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Optics Express, 2004, 12(25):6230-6239.
    [47] Fang Xiaohui, Hu Minglie, Liu Bowen, et al. Hundreds of megawatts peak power multi-core photonic crystal fiber laser amplifier[J]. Chinese Joural of Lasers, 2010, 37(9):2366-2370. (in Chinese)方晓惠, 胡明列, 刘博文, 等. 百兆瓦峰值功率的多芯光子晶体光纤飞秒激光放大系统[J]. 中国激光, 2010, 37(9):2366-2370.
    [48] Jain Saurabh, Castro Carlos, Jung Yongmin, et al. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system[J]. Optics Express, 2017, 25(26):32887-32896.
    [49] Prevost F, Lombard L, Primot J, et al. Coherent beam combining of a narrow-linewidth long-pulse Er3+-doped multicore fiber amplifier[J]. Optics Express, 2017, 25(9):9528-9534.
    [50] Klenke A, Mller M, Stark H, et al. Coherently combined 16-channel multicore fiber laser system[J]. Optics Letters, 2018, 43(7):1519-1522.
    [51] Zhao Zhiyong, Soto Marcelo A, Tang Ming, et al. Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers[C]//Advanced Photonics, 2016:SeM4D.4.
    [52] Zhao Z, Soto M A, Tang M, et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Opt Express, 2016, 24(22):25211-25223.
    [53] Westbrook Paul S, Kremp Tristan, Feder Kenneth S, et al. Continuous multicore optical fiber grating arrays for distributed sensing applications[J]. Journal of Lightwave Technology, 2017, 35(6):1248-1252.
    [54] Schlzgen Axel, Van Newkirk Amy, Antonio-Lopez Jose Enrique, et al. Fiber optic sensors based on strongly coupled multicore fiber[C]//Advanced Photonics, 2017:SeW1E.1.
    [55] Van Newkirk Amy, Sanjabi Eznaveh Zeinab, Antonio-Lopez Enrique, et al. High temperature sensor based on supermode interference in multicore fiber[C]//CLEO, 2014:SM2N.7.
    [56] Zhang Hailiang, Wu Zhifang, Shum Perry Ping, et al. Highly sensitive strain sensor based on helical structure in multicore fiber[C]//Conference on Lasers and Electro-Optics, 2016:SM2P.3.
    [57] Van Newkirk Amy, Antonio-Lopez Enrique, Salceda-Delgado Guillermo, et al. Optimization of multicore fiber for high-temperature sensing[J]. Optics Letters, 2014, 39(16):4812-4815.
    [58] Villatoro Joel, Antoniolopez Enrique, Zubia Joseba, et al. Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing[J]. Optics Express, 2017, 25(21):25734.
    [59] Li Chao, Ning Tigang, Zhang Chan, et al. All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications[J]. Sensors and Actuators A:Physical, 2016, 248:148-154.
    [60] Li Chao, Ning Tigang, Li Jing, et al. Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating.[J]. Optics Laser Technology, 2017, 90:179-184.
    [61] Kumar Arun, Goel Nitin K, Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference[J]. Journal of Lightwave Technology, 2001, 19(3):358.
    [62] Li An, Wang Yifei, Hu Qian, et al. Few-mode fiber based optical sensors[J]. Optics Express, 2015, 23(2):1139-1150.
    [63] Li An, Wang Yifei, Fang Jian, et al. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination.[J]. Optics Letters, 2015, 40(7):1488-1491.
    [64] Weng Yi, Ip Ezra, Pan Zhongqi, et al. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers[J]. Optics Express, 2015, 23(7):9024-9039.
    [65] Yang Hangzhou, Ali M M, Islam M R, et al. Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement[J]. Sensors and Actuators A:Physical, 2015, 228:62-68.
    [66] Sun B, Fang F, Zhang Z, et al. High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference[J]. Optics Letters, 2018, 43(6):1311-1314.
    [67] Lu Chenxu, Su Juan, Dong Xiaopeng, et al. Simultaneous measurement of strain and temperature with a few-mode fibre-based sensor[J]. Journal of Lightwave Technology, 2018, 36(13):2796-2802.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(528) PDF downloads(78) Cited by()

Related
Proportional views

Research on specialty and application of space-division-multiplexing fiber

doi: 10.3788/IRLA201847.1002001
  • 1. Key Laboratory of All Optical Network and Advanced Telecommunication Network of EMC,Institute of Lightwave Technology,Beijing Jiaotong University,Beijing 100044,China

Abstract: With the development of 5G, internet of things and big data, optical communication networks, as the backbone of data transmission, are imperative to expand their capacity, improve transmission stability and network intelligence. Space-division multiplexing technology, which is mainly based on multi-core fiber, few-mode fiber and few-mode-multi-core fiber, is considered to be the key to improve the capacity of optical communication network system and build next-generation optical communication networks. Based on the reported experimental results, the application of space-division multiplexed fiber was mainly studied in optical transmission, high-performance laser and fiber sensing. It is fully demonstrated that the space-division multiplexed fibers are important to the modern optical fiber communication system. It will be a hot spot and should be drawn much attention for the evolving optical communication.

Reference (67)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return