Volume 47 Issue 10
Oct.  2018
Turn off MathJax
Article Contents

Liu Zhengjun, Guo Cheng, Tan Jiubin. Lensfree computational imaging based on multi-distance phase retrieval[J]. Infrared and Laser Engineering, 2018, 47(10): 1002002-1002002(16). doi: 10.3788/IRLA201847.1002002
Citation: Liu Zhengjun, Guo Cheng, Tan Jiubin. Lensfree computational imaging based on multi-distance phase retrieval[J]. Infrared and Laser Engineering, 2018, 47(10): 1002002-1002002(16). doi: 10.3788/IRLA201847.1002002

Lensfree computational imaging based on multi-distance phase retrieval

doi: 10.3788/IRLA201847.1002002
  • Received Date: 2018-08-05
  • Rev Recd Date: 2018-09-03
  • Publish Date: 2018-10-25
  • Iterative phase retrieval, as a computational imaging technique, provides a powerful tool that combines the superiority of post-processing algorithm with an optical system, which will facilitate a low-cost and portable implementation for microscope. Lensfree imaging based on multi-distance phase retrieval becomes a focused topic in the domain of computational imaging, due to its high-resolution, wide field and aberration-less propertyies. Multi-distance phase retrieval reconstructs a full wavefront merely with a dataset of defocused intensity patterns related to different diffraction distances. At present, this technique suffers from tilt illumination artifact, convergence stagnation, measurement uncertainty of the sample-to-sensor distance, color imaging artifact and resolution loss with pixelated problem. Different correction methods to solve these problems were proposed in this paper. Experiment was also given to validate the performance of these methods.
  • [1] Abels E, Pantanowitz L. Current state of the regulatory trajectory for whole slide imaging devices in the USA[J]. Journal of Pathology Informatics, 2017, 8(1):23.
    [2] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7:739-745.
    [3] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light:Science Applications, 2015, 4:e261.
    [4] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2(2):104-111.
    [5] Liu Z, Guo C, Tan J, et al. Securing color image by using phase-only encoding in Fresnel domains[J]. Optics and Lasers in Engineering, 2015, 68:87-92.
    [6] Dean B H, Aronstein D L, Smith J S, et al. Phase retrieval algorithm for JWST flight and testbed telescope[C]//SPIE, 2006, 6265:1-17.
    [7] Bhaduri B, Edwards C, Pham H, et al. Diffraction phase microscopy:principles and applications in materials and life sciences[J]. Advances in Optics and Photonics, 2014, 6:57-119.
    [8] Mic V, Garca J, Zalevsky Z, et al. Phase-shifting Gabor holography[J]. Optics Letters, 2009, 34(10):1492-1494.
    [9] Osten W, Faridian A, Gao P, et al. Recent advances in digital holography[Invited] [J]. Applied Optics, 2014, 53(27):G44-G63.
    [10] Teague M R. Deterministic phase retrieval:a Green's function solution[J]. Journal of the Optical Society of America, 1983, 73(11):1434-1441.
    [11] Zuo Chao, Chen Qian, Sun Jiagao, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation:a review[J]. Chinese Journal of Lasers, 2016, 43(6):0609002. (in Chinese)
    [12] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2):237-246.
    [13] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21(15):2758-2769.
    [14] Fienup J R, Crimmins T R, Holsztynski W. Reconstruction of the support of an object from the support of its autocorrelation[J]. Journal of the Optical Society of America, 1982, 72(5):610-624.
    [15] Marchesini S, He H, Chapman H N, et al. X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 2003, 68:140101.
    [16] Elser V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 2003, 20(1):40-55.
    [17] Luke D R. Relaxed averaged alternating reflections for diffraction imaging[J]. Inverse Problems, 2005, 21:37-50.
    [18] Rodriguez J A, Xu R, Chen C C, et al. Oversampling smoothness:an effective algorithm for phase retrieval of noisy diffraction intensities[J]. Journal of Applied Crystallography, 2013, 46(2):312-318.
    [19] Miao J, Charalambous C, Kirz J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 1999, 400(2):342-344.
    [20] Miao J, Ishikawa T, Robinson I K, et al. Beyond crystallography:diffractive imaging using coherent X-ray light sources[J]. Science, 2015, 348(6234):530-535.
    [21] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85:4795-4797.
    [22] Rodenburg J M, Hurst A C, Cullis A G, et al. Hard-x-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98:034801.
    [23] Claus D, Maiden A M, Zhang F, et al. Quantitative phase contrast optimized cancerous cell differentiation via ptychography[J]. Optics Express, 2012, 20(9):9911-9918.
    [24] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109:1256-1262.
    [25] Dierolf M, Menzel A, Thibault P, et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 2010, 467:436-440.
    [26] Yao Y, Veeti S P, Liu C, et al. Ptychographic phase microscope based on high-speed modulation on the illumination beam[J]. Journal of Biomedical Optics, 2017, 22(3):036010.
    [27] Greenbaum A, Luo W, Su T W, et al. Imaging without lenses:achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9):889-895.
    [28] Bishara W, Su T, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
    [29] Luo W, Zhang Y, Feizi A, et al. Pixel super-resolution using wavelength scanning[J]. Light:Science Applications, 2016, 5(4):e16060.
    [30] Greenbaum A, Sikoraa U, Ozcan A. Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging[J]. Lab on a Chip, 2012, 12:1242-1245.
    [31] Lin X, Rivenson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 10:1126.
    [32] Bishara W, Zhu H, Ozcan A. Holographic opto-fluidic microscopy[J]. Optics Express, 2010, 18(26):27499-27510.
    [33] Latychevskaia T, Fink H W. Solution to the twin image problem in holography[J]. Physical Review Letters, 2007, 98:233901.
    [34] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 2005, 30(8):833-835.
    [35] Guo C, Tan J, Liu Z. Precision influence of phase retrieval algorithm in fractional Fourier domains from position measurement error[J]. Applied Optics, 2015, 54(22):6940-6947.
    [36] Shen C, Bao X, Tan J, et al. Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint[J]. Optics Express, 2017, 25(14):16235-16249.
    [37] Guo C, Shen C, Tan J, et al. A robust multi-image phase retrieval[J]. Optics and Lasers in Engineering, 2018, 101(1):16-22.
    [38] Noom D W E, Eikema K S E, Witte S. Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction[J]. Optics Letters, 2014, 39(2):193-196.
    [39] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics Express, 2015, 23(11):14314-14328.
    [40] Feng S, Wang M, Wu J. Lensless in-line holographic microscope with Talbot grating illumination[J]. Optics Letters, 2016, 41(14):3157-3160.
    [41] Singh A K, Pedrini G, Takeda M, et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution[J]. Scientific Reports, 2017, 7:10687.
    [42] Zhang Z, Zhou Y, Jiang S, et al. Invited article:Mask-modulated lensless imaging with multi-angle illuminations[J]. APL Photonics, 2018, 3:060803.
    [43] Zhou Y, Wu J, Suo J, et al. Single-shot lensless imaging via simultaneous multi-angle LED illumination[J]. Optics Express, 2018, 26(17):21418-21432.
    [44] Shi B, Lian Q, Huang X, et al. Constrained phase retrieval:when alternating projection meets regularization[J]. Journal of the Optical Society of America B, 2018, 35(6):1271-1281.
    [45] Guo C, Wei C, Tan J, et al. A review of iterative phase retrieval for measurement and encryption[J]. Optics and Lasers in Engineering, 2017, 89(1):2-12.
    [46] Katkovnik V, Astola J. High-accuracy wave field reconstruction:decoupled inverse imaging with sparse modeling of phase and amplitude[J]. Journal of the Optical Society of America A, 2012, 29(1):44-54.
    [47] Villanueva-Perez P, Arcadu F, Cloetens P, et al. Contrast-transfer-function phase retrieval based on compressed sensing[J]. Optics Letters, 2017, 42(6):1133-1136.
    [48] Migukin A, Katkovnik V, Astola J. Wave field reconstruction from multiple plane intensity-only data:augmented Lagrangian algorithm[J]. Journal of the Optical Society of America A, 2011, 28(6):993-1002.
    [49] Martin A V, Wang F, Loh N D, et al. Noise-robust coherent diffractive imaging with a single diffraction pattern[J]. Optics Express, 2012, 20(15):16650-16661.
    [50] Zhang F, Peterson I, Vila-Comamala J, et al. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 2013, 21(11):13592-13606.
    [51] Hessing P, Pfau B, Guehrs E, et al. Holography-guided ptychography with soft X-rays[J]. Optics Express, 2016, 24(2):1840-1851.
    [52] Sidorenko P, Cohen O. Single-shot ptychography[J]. Optica, 2016, 3(1):9-14.
    [53] Faulknera H M L, Allena L J, Oxleya M P, et al. Computational aberration determination and correction[J]. Optics Communications, 2003, 216:89-98.
    [54] Hanser B M, Gustafsson M G L, Agard D A, et al. Phase retrieval for high-numerical-aperture optical systems[J]. Optics Letters, 2003, 28(10):801-803.
    [55] Liu Z, Guo C, Tan J, et al. Iterative phase-amplitude retrieval from multiple images in gyrator domains[J]. Journal of Optics, 2015, 17:025701.
    [56] Anand A, Chhaniwal V K, Almoro P, et al. Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval[J]. Optics Letters, 2009, 34(10):1522-1524.
    [57] Bao P, Zhang F, Pedrini G, et al. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 2008, 33(4):309-311.
    [58] Witte S, Tenner V T, Noom D W, et al. Lensless diffractive imaging with ultra-broadband table-top sources:from infrared to extreme-ultraviolet wavelengths[J]. Light:Science Applications, 2014, 3:e163.
    [59] Latychevskaia T, Fink H W. Practical algorithms for simulation and reconstruction of digital in-line Holograms[J]. Applied Optics, 2015, 54:2424-2434.
    [60] Guo C, Li Q, Tan J, et al. A method of solving tilt illumination for multiple distance phase retrieval[J]. Optics and Lasers in Engineering, 2018, 106(1):17-23.
    [61] Guo C, Li Q, Wei C, et al. Axial multi-image phase retrieval under tilt illumination[J]. Scientific Reports, 2017, 7:7562.
    [62] Guizar-Sicairos M, Thurman S T, Fienup J R. Efficient subpixel image registration algorithms[J]. Optics Letters, 2008, 33(2):156-158.
    [63] Choi Y S, Lee S J. Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy[J]. Applied Optics, 2009, 48(16), 2983-2990.
    [64] Krotkov E. Focusing[J]. International Journal of Computer Vision, 1987, 1(3):223-237.
    [65] Ren Z, Chen N, Lam E Y. Automatic focusing for multisectional objects in digital holography using the structure tensor[J]. Optics Letters, 2017, 42(9):1720-1723.
    [66] Zhang Y, Wang H, Wu Y, et al. Edge sparsity criterion for robust holographic autofocusing[J]. Optics Letters, 2017, 42(19):3824-3827.
    [67] Gao P, Yao B, Rupp R, et al. Autofocusing based on wavelength dependence of diffraction in two-wavelength digital holographic microscopy[J]. Optics Letters, 2012, 37(7):1172-1174.
    [68] Liao J, Bian L, Bian Z, et al. Single-frame rapid autofocusing for brightfield and fluorescence whole slide imaging[J]. Biomedical Optics Express, 2016, 7(11):4763-4768.
    [69] Ren Z, Xu Z, Lam E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica, 2018,5(4):337-344.
    [70] Jiang S, Liao J, Bian Z, et al. Transform-and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging[J]. Biomedical Optics Express, 2018, 9(4):1601-1612.
    [71] Guo C, Zhao Y, Tan J, et al. Adaptive lens-free computational coherent imaging using autofocusing quantification with speckle illumination[J]. Optics Express, 2018, 26(11):14407-14420.
    [72] Guo C, Li Q, Zhang X, et al. Enhancing imaging contrast via weighted feedback for iterative multi-image phase retrieval[J]. Journal of Biomedical Optics, 2018, 23(1):016015.
    [73] Guo C, Shen C, Tan J, et al. A fast-converging iterative method for multiple distance phase retrieval[J]. Scientific Reports, 2018, 8:6436.
    [74] Greenbaum A, Zhang Y, Feizi A, et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy[J]. Science Translational Medicine, 2014, 6(267):267ra175.
    [75] Park S C, Park M K, Kang M G. Super-resolution image reconstruction:a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20:21-36.
    [76] Wang M, Feng S, Wu J. Multilayer pixel super-resolution lensless in-line holographic microscope with random sample movement[J]. Scientific Reports, 2017, 7:12791.
    [77] Zhang J, Sun J, Chen Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7:11777.
    [78] Latychevskaia T, Fink H W. Resolution enhancement in digital holography by self-extrapolation of holograms[J]. Optics Express, 2013, 21(6):7726-7733.
    [79] Greenbaum A, Feizi A, Akbari N, et al. Wide-field computational color imaging using pixel super-resolved on-chip microscopy[J]. Optics Express, 2013, 21(10):12469-12483.
    [80] Repetto L, Piano E, Pontiggia C. Lensless digital holographic microscope with light-emitting diode illumination[J]. Optics Letters, 2004, 29:1132-34.
    [81] Ozcan A, McLeod E. Lensless imaging and sensing[J]. Annual Review of Biomedical Engineering, 2016, 18:77-102.
    [82] Feng S, Wu J. Resolution enhancement method for lensless in-line holographic microscope with spatially extended light source[J]. Optics Express, 2017, 25(20):24735-24744.
    [83] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3:1717.
    [84] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation:fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8):9220-9244.
    [85] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199:65-75.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(793) PDF downloads(133) Cited by()

Related
Proportional views

Lensfree computational imaging based on multi-distance phase retrieval

doi: 10.3788/IRLA201847.1002002
  • 1. Department of Automatic Test and Control,Harbin Institute of Technology,Harbin 150001,China

Abstract: Iterative phase retrieval, as a computational imaging technique, provides a powerful tool that combines the superiority of post-processing algorithm with an optical system, which will facilitate a low-cost and portable implementation for microscope. Lensfree imaging based on multi-distance phase retrieval becomes a focused topic in the domain of computational imaging, due to its high-resolution, wide field and aberration-less propertyies. Multi-distance phase retrieval reconstructs a full wavefront merely with a dataset of defocused intensity patterns related to different diffraction distances. At present, this technique suffers from tilt illumination artifact, convergence stagnation, measurement uncertainty of the sample-to-sensor distance, color imaging artifact and resolution loss with pixelated problem. Different correction methods to solve these problems were proposed in this paper. Experiment was also given to validate the performance of these methods.

Reference (85)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return