Volume 47 Issue 10
Oct.  2018
Turn off MathJax
Article Contents

Cao Yuxuan, Shu Shili, Sun Fangyuan, Zhao Yufei, Tong Cunzhu, Wang Lijun. Development of beam combining technology in mid-infrared semiconductor lasers (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003002-1003002(8). doi: 10.3788/IRLA201847.1003002
Citation: Cao Yuxuan, Shu Shili, Sun Fangyuan, Zhao Yufei, Tong Cunzhu, Wang Lijun. Development of beam combining technology in mid-infrared semiconductor lasers (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003002-1003002(8). doi: 10.3788/IRLA201847.1003002

Development of beam combining technology in mid-infrared semiconductor lasers (invited)

doi: 10.3788/IRLA201847.1003002
  • Received Date: 2018-05-10
  • Rev Recd Date: 2018-06-20
  • Publish Date: 2018-10-25
  • Mid-infrared semiconductor lasers possess the advantages of small volume and high efficiency and have important application prospects in the field of environmental detection, space communication and military defense. However, the output power of mid-infrared semiconductor laser device is low, which limits its application in the above fields. Laser beam combining technology is an important approach to enhance the power of mid-infrared semiconductor lasers. In this paper, several beam combining methods and the latest progress of mid-infrared semiconductor lasers were introduced in detail.
  • [1] Scholle K, Fuhrberg P, Koopmann P, et al. 2m Laser Sources and Their Possible Applications[M]. New York:InTech Open Access Publisher, 2010.
    [2] Sijan A. Development of military lasers for optical countermeasures in the mid-IR[C]//SPIE, 2009, 7483:748304.
    [3] Choi H K, Eglash S J. High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1m with ow threshold current density[J]. Applied Physics Letters, 1992, 61(10):1154-1157.
    [4] Shu S L, Tong C Z, Wang L J, et al. Progress of optically pumped GaSb based semiconductor disk laser[J]. Opto-Electronic Advances, 2018, 1(2):170003.
    [5] Kim G, Shterengas L, Martinelli R U, et al. High-power room-temperature continuous wave operation of 2.7 and 2.8m In(Al)Ga AsSb/GaSb diode lasers[J]. Applied Physics Letters, 2003, 83(10):1926-1928.
    [6] Donetsky D, Kipshidze G, Shterengas L, et al. 2.3m type-I quantum well GaInAsSb/AlGaAsSb/GaSb laser diodes with quasi-CW output power of 1.4 W[J]. Electronics Letters, 2007, 43(15):810-811.
    [7] Vizbaras K, Amann M C. Room-temperature 3.73m GaSb-based type-I quantum-well lasers with quinternary barriers[J]. Semiconductor Science Technology, 2012, 27(3):032001.
    [8] Faist J, Capasso F, Sirtori C, et al. Vertical transition quantum cascade laser with Bragg confined excited state[J]. Applied Physics Letters, 1995, 66(5):538-540.
    [9] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553):301-305.
    [10] Bai Y, Bandyopadhyay N, Tsao S, et al. Highly temperature insensitive quantum cascade lasers[J]. Applied Physics Letters, 2010, 97(24):251104.
    [11] Faist J, Cappasso F, Sivco D L, et al. Short wavelength (-3.4m) quantum cascade laser based on strained compensated InGaAs/AlI[J]. Applied Physics Letters, 1998, 72(6):680-682.
    [12] Evans A, Nguyen J, Slivken S, et al. Quantum-cascade lasers operating in continuous-wave mode above 90℃ at lambda similar to 5.25m[J]. Applied Physics Letters, 2006, 88(5):051105.
    [13] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158):553-556.
    [14] Bai Y, Slivken S, Kuboya S, et al. Quantum cascade lasers that emit more light than heat[J]. Nature Photonics, 2010, 4(2):99-102.
    [15] Liu P Q, Hoffman A J, Escarra M D, et al. Highly power-efficient quantum cascade lasers[J]. Nature Photonics, 2010, 4(2):95-98.
    [16] Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency[J]. Applied Physics Letters, 2011, 98(18):181102.
    [17] Bloom G, Larat C, Lallier E, et al. Coherent combining of two quantum-cascade lasers in a Michelson cavity[J]. Optics Letters, 2010, 35(11):1917-1919.
    [18] Bloom G, Larat C, Lallier E, et al. Passive coherent beam combining of quantum-cascade lasers with a Dammann grating[J]. Optics Letters, 2011, 36(9):3810-3812.
    [19] Huang R K, Chann B, Burgess J, et al. TeraDiode's high brightness semiconductor lasers[C]//SPIE, 2015, 9730:97300C.
    [20] Fan T Y, Sanchez A, Daneu V, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Optics Letters, 2000, 25(6):405-407.
    [21] Vijayakumar D, Jensen O B, Thestrup B, et al. Wavelength beam combining of a 980 nm tapered diode laser bar in an external cavity[C]//SPIE, 2010, 7720:77201U.
    [22] Huang R K, Missaggia L J, Chann B, et al. High-brightness wavelength beam combined semiconductor laser diode arrays[J]. IEEE Photonics Technology Letters, 2007, 19(4):209-211.
    [23] Montoya J, Augst S J, Creedon K, et al. External cavity beam combining of 21 semiconductor lasers using SPGD[J]. Applied Optics, 2012, 51(11):1727-1728.
    [24] Mller A, Vijayakumarole D, Jensen O, et al. Spectral beam combining of diode lasers with high efficiency[C]//Lasers, Sources, and Related Photonic Devices Technical Digest OSA, 2012:AM4A 10.
    [25] Lee B G, Kansky J, Goyal A K, et al. Beam combining of quantum cascade laser arrays[J]. Optics Express, 2009, 17(18):16216-16224.
    [26] Goyal A K, Spencer M, Shatrovoy O, et al. Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays[J]. Optics Express, 2011, 19(27):26725-26732.
    [27] Hugger S, Fuchsa F, Aidama R, et al. Spectral beam combining of quantum cascade lasers in an external cavity[C]//SPIE, 2009, 7325:73250H.
    [28] Bradshawa J L, Toberbjohn R L, Brunoa D, et al. Wavelength beam combined quantum cascade lasers for IRCM[C]//SPIE, 2009, 7325:73250K.
    [29] Hugger S, Aidam R, Bronner W, et al. Power scaling of quantum cascade lasers via multiemitter beam combining[J]. Optics Express, 2010, 49(11):111111.
    [30] Wagner J, Schulz N, Rsener B, et al. Infrared semiconductor lasers for DIRCM applications[C]//SPIE, 2008, 7115:71150A.
    [31] Eldera I F, Thornea D H, Lamba A R, et al. Mid-IR laser source using hollow waveguide beam combining[C]//SPIE, 2016, 9726:972601.
    [32] Wu H, Wang L J, Peng H Y, et al. High efficiency beam combination of 4.6m quantum cascade lasers[J]. Chinese Optics Letters, 2013, 11(9):091401.
    [33] Wu H, Shu S L, Ning Y Q, et al. High-efficiency beam combination of continuous-wave quantum cascade lasers[J]. Chinese Journal of Lasers, 2015, 42(7):0702005. (in Chinese)
    [34] Zhao Y, Zhang J C, Zhou Y H, et al. External-cavity beam combining of 4-channel quantum cascade lasers[J]. Infrared Physics Technology, 2017, 85:52-55.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(708) PDF downloads(203) Cited by()

Related
Proportional views

Development of beam combining technology in mid-infrared semiconductor lasers (invited)

doi: 10.3788/IRLA201847.1003002
  • 1. State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;
  • 2. University of Chinese Academy of Sciences,Beijing 100049,China

Abstract: Mid-infrared semiconductor lasers possess the advantages of small volume and high efficiency and have important application prospects in the field of environmental detection, space communication and military defense. However, the output power of mid-infrared semiconductor laser device is low, which limits its application in the above fields. Laser beam combining technology is an important approach to enhance the power of mid-infrared semiconductor lasers. In this paper, several beam combining methods and the latest progress of mid-infrared semiconductor lasers were introduced in detail.

Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return