Volume 47 Issue 10
Oct.  2018
Turn off MathJax
Article Contents

Zhang Yi, Zhang Yu, Yang Cheng'ao, Xie Shengwen, Shao Fuhui, Shang Jinming, Huang Shushan, Yuan Ye, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan. Research progress of 3-4μm antimonide interband cascade laser (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003003-1003003(7). doi: 10.3788/IRLA201847.1003003
Citation: Zhang Yi, Zhang Yu, Yang Cheng'ao, Xie Shengwen, Shao Fuhui, Shang Jinming, Huang Shushan, Yuan Ye, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan. Research progress of 3-4μm antimonide interband cascade laser (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003003-1003003(7). doi: 10.3788/IRLA201847.1003003

Research progress of 3-4μm antimonide interband cascade laser (invited)

doi: 10.3788/IRLA201847.1003003
  • Received Date: 2018-05-07
  • Rev Recd Date: 2018-06-12
  • Publish Date: 2018-10-25
  • The mid-infrared lasers of 3-4 m can be widely used in industrial gas detection, medical treatment and free space optical communication. At present, the antimonide semiconductor interband cascade laser is an ideal scheme for realizing 3-4 m in the middle infrared band. The interband cascade laser (ICL) may be considered the hybrid of a conventional diode laser that generates photons via electron-hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. This paper gives an overview of the basic working principle of inter-band cascade lasers, and describes the development history of major inter-band cascade lasers, including the University of Oklahoma, the US Naval Laboratory, and the University of Woodsburg. The performance of the interband cascade laser developed by the Institute of Semiconductors of the Chinese Academy of Sciences is also included. By analyzing the difficulties in designing and preparing the laser, the technical solution to further improve the performance of this kind of lasers is expounded.
  • [1] Leon Shterengas, Rui Liang, Gela Kipshidze, et al. Type-I quantum well cascade diode lasers emitting near 3m[J]. Appl Phys Lett, 2013, 103(12):121108.
    [2] Grau M, Lin C, Dier O, et al. Room-temperature operation of 3.26m GaSb-based type-I lasers with quinternary AlGaInAsSb barriers[J]. Appl Phys Lett, 2005, 87(24):241104.
    [3] Gaimard Q, Nguyen-Ba T, Larrue A, et al. Distributed-feedback GaSb-based laser diodes in the 2.3 to 3.3m wavelength range[J]. Semiconductor Lasers and Laser Dynamics Vi, 2014, 9134:2052115.
    [4] Yang R Q, Pei S S J. Novel type-Ⅱ quantum cascade lasers[J]. J Appl Phys, 1996, 79(11):8197-8203.
    [5] Meyer J R, Ho_man C A, Bartoli F J, et al. Type-Ⅱ quantum-well lasers for the mid-wavelength infrared[J]. Appl Phys Lett, 1995, 67(6):757-759.
    [6] Thompson G H B, Kirkby P. (GaAl)As lasers with a heterostructure for optical confinement and additional heterojunctions for extreme carrier confinement[J]. IEEE J Quantum Electron, 1973, 9(2):311-318.
    [7] Sirtori C, Faist J, Capasso F, et al. Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4m wavelength[J]. Appl Phys Lett, 1995, 66(24):3242-3244.
    [8] Yang R Q. Infrared laser based on intersubband transitions in quantum wells[J]. Superlatticeand Microdevices, 1995, 17(1):1017.
    [9] Lin Chih-Hsiang, Yang Q, Zhang D, et al. Type Ⅱ interband quantum cascade laser at 3.8m[J]. Electronics Letters, 2015, 33(7):598-599.
    [10] Yang R Q, Bruno J D, Bradshaw J L, et al. High-power interband cascade lasers with quantum efficiency 450%[J]. Electronics Letters, 1999, 35(15):1254-1255.
    [11] Bradshaw J L, Yang R Q, Bruno J D, et al. High-efficiency interband cascade lasers with peak power exceeding 4 W/facet[J]. Appl Phys Lett, 1999, 75(16):2362-2364.
    [12] Bradshaw J L, Bruno J D, Pham J T, et al. Continuous wave operation of type-Ⅱ interband cascade lasers[J].IEEE Proc Optoelectron, 2000, 147:177-180.
    [13] Bruno J D, Bradshaw J L, Yang R Q, et al. Low-threshold interband cascade lasers with power efficiency exceeding 9%[J]. Appl Phys Lett, 2000, 76(22):3167-3169.
    [14] Bradshaw J L, Pham J T, Yang R Q, et al. Enhanced CW performance of the interband cascade laser using improved device fabrication[J]. IEEE J Select Top Quantum Electron, 2001, 37(2):102-105.
    [15] Yang R Q, Bradshaw J L, Bruno J D, et al. Power, efficiency, and thermal characteristics of type-Ⅱ interband cascade lasers[J]. IEEE J Select Top Quantum Elctron, 2001, 37(2):282-289.
    [16] Yang R Q, Bradshaw J L, Bruno J D, et al. Room temperature type-Ⅱ interband cascade laser[J].Appl Phys Lett, 2002, 81(3):397-399.
    [17] Yang R Q, Hill C J, Christensen L E, et al. Mid-IR type-Ⅱ interband cascade lasers and their applications[C]//Proc of SPIE, 2005, 5624:413-422.
    [18] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers[J]. Appl Phys Lett, 2005, 87(15):151109.
    [19] Hill C J, Yang R Q. MBE growth optimization of Sb-based interband cascade lasers[J]. J Cryst Growth, 2005, 278(1):167-172.
    [20] Mansour K, Qiu Y, Hill C J, et al. Mid-infrared interband cascade lasers at thermoelectric cooler temperatures[J]. Electron Lett, 2006, 42(18):1034-1035.
    [21] Yang R Q, Hill C J, Mansour K, et al. Distributed feedback mid-IR interband cascade lasers at thermoelectric cooler temperatures[J]. IEEE J Select Top Quantum Elctron, 2007, 13(5):1074-1078.
    [22] Kim M, Canedy C L, Bewley W W, et al. Interband cascade laser emitting at 3.75 in continuous wave above room temperature[J]. Appl Phys Lett, 2008, 92(19):191110.
    [23] Vurgaftman I, Bewley W W, Canedy C L, et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nature Communications, 2011, 2(1):1585-1595.
    [24] Robert Weih, Martin Kamp, Sven Hfling, et al. Interband cascade lasers with room temperature threshold current densities below 100 A/cm2[J]. Appl Phys Lett, 2013, 102(23):231123.
    [25] Bewley W W, Kim C S, Canedy C L, et al. High-power CW performance of 7-stage interband cascade lasers[J]. Opt Express, 2014, 22(7):7702-7710.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(657) PDF downloads(100) Cited by()

Related
Proportional views

Research progress of 3-4μm antimonide interband cascade laser (invited)

doi: 10.3788/IRLA201847.1003003
  • 1. State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;
  • 2. College of Materials Science and Opto-electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

Abstract: The mid-infrared lasers of 3-4 m can be widely used in industrial gas detection, medical treatment and free space optical communication. At present, the antimonide semiconductor interband cascade laser is an ideal scheme for realizing 3-4 m in the middle infrared band. The interband cascade laser (ICL) may be considered the hybrid of a conventional diode laser that generates photons via electron-hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. This paper gives an overview of the basic working principle of inter-band cascade lasers, and describes the development history of major inter-band cascade lasers, including the University of Oklahoma, the US Naval Laboratory, and the University of Woodsburg. The performance of the interband cascade laser developed by the Institute of Semiconductors of the Chinese Academy of Sciences is also included. By analyzing the difficulties in designing and preparing the laser, the technical solution to further improve the performance of this kind of lasers is expounded.

Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return