Volume 47 Issue 10
Oct.  2018
Turn off MathJax
Article Contents

Shang Jinming, Zhang Yu, Yang Cheng'ao, Xie Shengwen, Huang Shushan, Yuan Ye, Zhang Yi, Shao Fuhui, Xu Yingqiang, Niu Zhichuan. Research progress of GaSb based optically pumped semiconductor disk lasers (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003004-1003004(9). doi: 10.3788/IRLA201847.1003004
Citation: Shang Jinming, Zhang Yu, Yang Cheng'ao, Xie Shengwen, Huang Shushan, Yuan Ye, Zhang Yi, Shao Fuhui, Xu Yingqiang, Niu Zhichuan. Research progress of GaSb based optically pumped semiconductor disk lasers (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003004-1003004(9). doi: 10.3788/IRLA201847.1003004

Research progress of GaSb based optically pumped semiconductor disk lasers (invited)

doi: 10.3788/IRLA201847.1003004
  • Received Date: 2018-05-07
  • Rev Recd Date: 2018-06-12
  • Publish Date: 2018-10-25
  • GaSb based optically pumped semiconductor disk lasers (OP-SDLs) attracts considerable attention in novel mid-infrared laser device research field for their potential excellent beam quality and high output power. The epitaxy structure and basic principle of GaSb based OP-SDLs wafers were summarized. The development of GaSb based OP-SDLs at 2 m wavelength was reviewed respectively by analyzing the aspects of wavelength extending, power scaling, line-width narrowing, short-pulse generation and effective thermal management. The technical development direction and application prospects of this type of laser were discussed.
  • [1] Zhang Dongyan, Wang Rongrui. Progress on mid-infrared lasers[J]. Laser and Infrared, 2011, 41(5):487-491. (in Chinese)
    [2] Nikitichev A A, Stepanov A I. 2-mm lasers for optical monitoring[J]. Journal of Optical Technology c/c of Opticheskii Zhurnal, 1999, 66(66):718-723.
    [3] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A Molecular Biomolecular Spectroscopy, 1998, 54(2):197-236.
    [4] Mikhailova M P, Titkov A N. Type Ⅱ heterojunctions in the GaInAsSb/GaSb system[J]. Semiconductor Science Technology, 1994, 9(7):1279-1284.
    [5] Baranov A N, Cuminal Y, Boissier G, et al. Electroluminescence of GaInSb/GaSb strained single quantum well structures grown by molecular beam epitaxy[J]. Semiconductor Science Technology, 1996, 11(8):1185-1190.
    [6] Tilma B W, Mangold M, Zaugg C A, et al. Recent advances in ultrafast semiconductor disk lasers[J]. Light Science Applications, 2015, 4(7):e310.
    [7] Ville-Markus Korpijrvi, Kantola E L, Leinonen T, et al. Monolithic GaInNAsSb/GaAs VECSEL operating at 1550 nm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6):480-484.
    [8] Kantola E, Leinonen T, Ranta S, et al. 1180 nm VECSEL with 50 W output power[C]//SPIE, 2015, 9349:93490U.
    [9] Kantola E, Leinonen T, Penttinen J P, et al. 615 nm GaInNAs VECSEL with output power above 10 W[J]. Optics Express, 2015, 23(16):20280.
    [10] Myara M, Garnache A. Industrial integration of high coherence tunable single frequency semiconductor lasers based on VECSEL technology for scientific instrumentation in NIR and MIR[C]//SPIE, 2017, 10087:1008704.
    [11] Burns D, Hopkins J M, Kemp A J, et al. Recent developments in high-power short-wave mid-infrared semiconductor disk lasers[C]//SPIE, 2009:7193.
    [12] Rsener B, Rattunde M, Kaspar S, et al. GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8m wavelength range[C]//SPIE, 2010, 7578:75780X.
    [13] Kaspar S, Rattunde M, Tpper T, et al. Recent advances in 2-m GaSb-based semiconductor disk laser-power scaling, narrow-linewidth and short-pulse operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4):1501908.
    [14] Schulz N, Rattunde M, Manz C, et al. Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3m[J]. IEEE Photonics Technology Letters, 2006, 18(9):1070-1072.
    [15] Corzine S W, Geels R S, Scott J W, et al. Design of Fabry-Perot surface-emitting lasers with a periodic gain structure[J]. IEEE Journal of Quantum Electronics, 1989, 25(6):1513-1524.
    [16] Cerutti L, Garnache A, Genty F, et al. Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1m[J]. Electronics Letters, 2003, 39(3):290-292.
    [17] Hopkins J M, Hempler N, Rsener B, et al. High-power,(AlGaIn)(AsSb) semiconductor disk laser at 2.0m[J]. Optics Letters, 2008, 33(2):201-203.
    [18] Paajaste J, Suomalainen S, Koskinen R, et al. High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2m[J]. Journal of Crystal Growth, 2009, 311(7):1917-1919.
    [19] Holl P, Rattunde M, Adler S, et al. GaSb-based 2.0m SDL with 17 W output power at 20℃[J]. Electronics Letters, 2016, 52(21):1794-1795.
    [20] Cerutti L, Garnache A, Ouvrard A, et al. High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3m[J]. Journal of Crystal Growth, 2004, 268(1-2):128-134.
    [21] Cerutti L, Garnache A, Ouvrard A, et al. 2.36m diode pumped VCSEL operating at room temperature in continuous wave with circular TEM 00, output beam[J]. Electronics Letters, 2004, 40(14):869-871.
    [22] Rattunde M, Schulz N, Rsener B, et al. High brightness GaSb-based optically pumped semiconductor disk lasers at 2.3m[C]//SPIE, 2007, 6479:647915.
    [23] Rsener B, Rattunde M, Moser R, et al. GaSb-based optically pumped semiconductor disk laser using multiple gain elements[J]. IEEE Photonics Technology Letters, 2009, 21(13):848-850.
    [24] Paajaste J, Koskinen R, Nikkinen J, et al. Power scalable 2.5m (AlGaIn)(AsSb) semiconductor disk laser grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2011, 323(1):454-456.
    [25] Holl P, Rattunde M, Wagner J. Optimization of 2.5m VECSEL:influence of the QW active region[C]//SPIE, 2016, 97340:97340S.
    [26] Rsener B, Rattunde M, Moser R, et al. Continuous-wave room-temperature operation of a 2.8m GaSb-based semiconductor disk laser[J]. Optics Letters, 2011, 36(3):319-321.
    [27] Holl P, Rattunde M, Adler S, et al. GaSb-based VECSEL for high-power applications and Ho-pumping[C]//SPIE, 2017, 10087:1008705.
    [28] Holms M A, Burns D, Ferguson A I, et al. Actively stabilized single-frequency vertical-external-cavity AlGaAs laser[J]. Photonics Technology Letters IEEE, 1999, 11(12):1551-1553.
    [29] Cerutti L, Garnache A, Ouvrard A, et al. Vertical cavity surface emitting laser sources for gas detection[J]. Physica Status Solidi, 2005, 202(4):631-635.
    [30] Hopkins J M, Maclean A J, Burns D, et al. Tunable, single-frequency, diode-pumped 2.3m VECSEL[C]//Lasers and Electro-Optics, and Quantum Electronics, 2008, 15(13):1-2.
    [31] Kaspar S, Rosener B, Rattunde M, et al. Sub-MHz-linewidth 200 mW actively stabilized 2.3m semiconductor disk laser[J]. IEEE Photonics Technology Letters, 2011, 23(20):1538-1540.
    [32] Rsener B, Kaspar S, Rattunde M, et al. 2m semiconductor disk laser with a heterodyne linewidth below 10 kHz[J]. Optics Letters, 2011, 36(18):3587-3589.
    [33] Kaspar S, Rattunde M, Tpper T, et al. Semiconductor disk laser at 2.05m wavelength with 100 kHz linewidth at 1 W output power[J]. Applied Physics Letters, 2012, 100(3):407-415.
    [34] Kaspar S, Rattunde M, Topper T, et al. Linewidth narrowing and power scaling of single-frequency 2.X m GaSb-based semiconductor disk lasers[J]. IEEE Journal of Quantum Electronics, 2013, 49(3):314-324.
    [35] Price J H V, Monro T M, Ebendorff-Heidepriem H, et al. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3):738-749.
    [36] Yarborough J M, Lai Y Y, Kaneda Y, et al. Record pulsed power demonstration of a 2m GaSb-based optically pumped semiconductor laser grown lattice-mismatched on an AlAs/GaAs Bragg mirror and substrate[J]. Applied Physics Letters, 2009, 95(8):645109.
    [37] Lai Y Y, Yarborough J M, Kaneda Y, et al. 340 W peak power from a GaSb 2m optically pumped semiconductor laser(OPSL) grown mismatched on GaAs[J]. IEEE Photonics Technology Letters, 2010, 22(16):1253-1255.
    [38] Hrknen A, Paajaste J, Suomalainen S, et al. Picosecond passively mode-locked GaSb-based semiconductor disk laser operating at 2m[J]. Optics Letters, 2010, 35(24):4090-4092.
    [39] Harkonen A, Grebing C, Paajaste J, et al. Mode-locked GaSb disk laser producing 384 fs pulses at 2m wavelength[J]. Electronics Letters, 2011, 47(7):454-456.
    [40] Kaspar S, Rattunde M, Topper T, et al. Electro-optically cavity dumped 2m semiconductor disk laser emitting 3 ns pulses of 30 W peak power[J]. Applied Physics Letters, 2012, 101(14):1063-1087.
    [41] Schulz N, Rattunde M, Wagner J, et al. GaSb-based VECSELs emitting at around 2.35m employing different optical pumping concepts[C]//Photonics Europe, 2006:6184.
    [42] Schulz N, Rattunde M, Ritzenthaler C, et al. Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35m[J]. Applied Physics Letters, 2007, 91(9):1063-1069.
    [43] Holl P, Rattunde M, Adler S, et al. Recent advances in power scaling of GaSb-based semiconductor disk lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6):324-335.
    [44] Perez J P, Laurain A, Cerutti L, et al. Technologies for thermal management of mid-IR Sb-based surface emitting lasers[J]. Semiconductor Science Technology, 2017, 25(4):045021.
    [45] Devautour M, Michon A, Beaudoin G, et al. Thermal management for high-power single-frequency tunable diode-pumped VECSEL emitting in the near-and mid-IR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4):1701108.
    [46] Liau Z L. Semiconductor wafer bonding via liquid capillarity[J]. Applied Physics Letters, 2000, 77(5):651-653.
    [47] Kaspar S, Rattunde M, Schilling C, et al. Micro-cavity 2m GaSb-based semiconductor disk laser using high-reflectivity SiC heatspreader[J]. Applied Physics Letters, 2013, 103(4):041117.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(467) PDF downloads(79) Cited by()

Related
Proportional views

Research progress of GaSb based optically pumped semiconductor disk lasers (invited)

doi: 10.3788/IRLA201847.1003004
  • 1. State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;
  • 2. College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

Abstract: GaSb based optically pumped semiconductor disk lasers (OP-SDLs) attracts considerable attention in novel mid-infrared laser device research field for their potential excellent beam quality and high output power. The epitaxy structure and basic principle of GaSb based OP-SDLs wafers were summarized. The development of GaSb based OP-SDLs at 2 m wavelength was reviewed respectively by analyzing the aspects of wavelength extending, power scaling, line-width narrowing, short-pulse generation and effective thermal management. The technical development direction and application prospects of this type of laser were discussed.

Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return