Volume 47 Issue 11
Jan.  2019
Turn off MathJax
Article Contents

Meng Dongdong, Zhang Hongbo, Li Mingshan, Lin Weiran, Shen Zhaoguo, Zhang Jie, Fan Zhongwei. Laser technology for direct IR countermeasure system[J]. Infrared and Laser Engineering, 2018, 47(11): 1105009-1105009(10). doi: 10.3788/IRLA201847.1105009
Citation: Meng Dongdong, Zhang Hongbo, Li Mingshan, Lin Weiran, Shen Zhaoguo, Zhang Jie, Fan Zhongwei. Laser technology for direct IR countermeasure system[J]. Infrared and Laser Engineering, 2018, 47(11): 1105009-1105009(10). doi: 10.3788/IRLA201847.1105009

Laser technology for direct IR countermeasure system

doi: 10.3788/IRLA201847.1105009
  • Received Date: 2018-06-10
  • Rev Recd Date: 2018-07-28
  • Publish Date: 2018-11-25
  • Heat seeking weapons such as man-portable air defense system (MANPADs), various IR guiding missile are the main threaten for civil aircraft and military aircraft. As the appearance of IR imaging seeker, the effect of traditional IR interference equipment and infrared flares are limited. Otherwise, direct IR countermeasure (DIRCM) system has been effective means. In this paper, the international research on DIRCM and key techniques for laser of DIRCM was reviewed. Furthermore, calculating method for dazzling area of imaging detector was given. At the same time, the research trends of DIRCM and laser of DIRCM were forecasted in the future.
  • [1] Abramov P I, Kuznetsovand E V, Kvortsov L A. Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems:review[J]. Journal of Optical Technology, 2017, 84:331.
    [2] Fan Jinxiang, Li Liang, Li Wenjun. Development of direct infrared countermeasure system and technology[J]. Infrared and Laser Engineering, 2015, 44(S3):789-794. (in Chinese)范晋祥, 李亮, 李文军. 定向红外对抗系统与技术的发展[J]. 红外与激光工程, 2015, 44(S3):789-794.
    [3] Zhang Yuansheng, Xu Liang, Chen Fang, et al. Mid-infrared lasers used in airborne directed infrared countermeasures system and its key technologies[J]. Electronics Optics Control, 2017, 24(5):56-59. (in Chinese)张元生, 徐亮, 陈方, 等, 机载定向红外对抗系统的中波红外激光器及关键技术[J]. 电光与控制, 2017, 24(5):56-59.
    [4] Schleijipen R M A, Heuvel J C, Mieremet AL, et al. Laser dazzling of focal plane array cameras[C]//Proc SPIE, 2007, 6738:67380O.
    [5] Schleijipen R M A, Heuvel J C, Mieremet A L, et al. Laser dazzling of focal-plane-array cameras[C]//Proc SPIE, 2007, 6543:65431B.
    [6] Andrew Sijan, Development of military lasers for optical countermeasures in The mid-IR[C]//Proc SPIE Technologies for Optical Countermeasures VI, 2009, 7483:748304.
    [7] Ian Elder. Performance requirements for countermeasures lasers[C]//Proc SPIE Technologies for Optical Countermeasures VⅡ, 2010, 7836:783605.
    [8] Cornelius J Willers, Maria S Willers. Simulating the DIRCM engagement component and system level performance[C]//Proc SPIE, 2012, 8543:85430M.
    [9] Li Lijuan, Bai Xiaodong, Liu Ke. Analysis of the key technologies for dual color IR imaging guidance of air-to-air missile[J]. Laser Infrared, 2013, 43(9):1036-1039. (in Chinese)李丽娟, 白晓东, 刘珂. 空空导弹双色红外成像制导关键技术分析[J]. 激光与红外, 2013, 43(9):1036-1039.
    [10] Lippert E, Fonnum H, Stenersen K. High power multi-wavelength infrared source; proceedings of the Security+ Defence, F[C]//International Society for Optics and Photonics, 2010.
    [11] Martin Schellhorn, Gerhard Spindler, Marc Eichhorn. Improvement of the beam quality of a high-pulse-energy mid-infrared fractionalimage-rotation-enhancement ZnGeP2 optical parametric oscillator[J]. Opt Lett, 2017, 42:1185.
    [12] Wagner J, Hugger S, Rsener B, et al. Infrared semiconductor laser modules for DIRCM applications[C]//Proc SPIE Technologies for Optical Countermeasures VI, 2009, 7483:74830F.
    [13] Tauke-Pedretti A. Power sharing in dual-wavelength optically pumped midinfrared laser[J]. IEEE Photonics Technology Letters, 2009, 21(14):1011-1013.
    [14] Hopkins J M. High-power(AlGaIn)(AsSb) semiconductor disk laser at 2.0m[J]. Optics Letters, 2008, 33(2):201-203.
    [15] Kazarinov R F, Suris R A. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice[J]. Sov Phys Semicond, 1971, 5(4):707-709.
    [16] Jerome Faist, Federico Capasso, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264:553-556.
    [17] Mattias Beck, Daniel Hofstetter, Thierry Aellen, et al.Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295:301-305.
    [18] Alexei Tsekoun, Rowel Go, Michael Pushkarsky, et al.Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process[J]. Proc Nat Acad Sciences, 2006, 103:4831-4835.
    [19] Kumar C, Patel N, Arkadiy Lyakh. High power quantum cascade lasers forinfrared countermeasures, targeting and illumination, beacons and standoff detection of explosives and CWAs[C]//Proc SPIE Micro-and Nanotechnology Sensors, Systems, and Applications VⅡ, 2015, 9467:946702.
    [20] Manijeh Razeghi, Zhou Wenjia, Steven Slivken, et al. Recent progress of quantum cascade laser research from 3 to 12m at the Center for Quantum Devices[J]. Applied Optics, 2017, 56(31):H30-H44.
    [21] Heydari D, Bai Y, Bandyopadhyay N, et al. High brightness angled cavity quantum cascade lasers[J]. Appl Phys Lett, 2015, 106:091105.
    [22] Hopkins J-M. High-power(AlGaIn)(AsSb) semiconductor disk laser at 2.0m[J]. Optics Letter, 2008, 33(2):201-203.
    [23] Zhou W J, Bandyopadhyay N, Wu D H, et al. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design[J]. Sci Rep, 2016, 6:25213.
    [24] Bradshaw J L, Tober R L, Bruno J D, et al. Wavelength beam combined quantum cascade lasers for IRCM[C]//Proc SPIE Laser Technology for Defense and Security V, 2009, 7325:73250K.
    [25] Liu Fengqi, Wang Zhanguo. Infrared quantum cascade lasers[J]. Physics, 2001, 30(10):596-601. (in Chinese)刘峰奇, 王占国, 红外量子级联激光器[J]. 物理, 2001, 30(10):596-601.
    [26] Song Shufang, Xing Weirong, Liu Ming. Theory and research advancement of quantum cascade lasers[J]. Laser Infrared, 2013, 43(9):972-976. (in Chinese)宋淑芳, 邢伟荣, 刘铭. 量子级联激光器的原理及研究进展[J]. 激光与红外, 2013, 43(9):972-976.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(673) PDF downloads(152) Cited by()

Related
Proportional views

Laser technology for direct IR countermeasure system

doi: 10.3788/IRLA201847.1105009
  • 1. Academy of Opto-electronics,Chinese Academy of Sciences,Beijing 100094,China;
  • 2. University of Chinese Academy of Sciences,Beijing 100049,China;
  • 3. Luoyang Institute of Electro-Optical Equipment,Luoyang 471000,China

Abstract: Heat seeking weapons such as man-portable air defense system (MANPADs), various IR guiding missile are the main threaten for civil aircraft and military aircraft. As the appearance of IR imaging seeker, the effect of traditional IR interference equipment and infrared flares are limited. Otherwise, direct IR countermeasure (DIRCM) system has been effective means. In this paper, the international research on DIRCM and key techniques for laser of DIRCM was reviewed. Furthermore, calculating method for dazzling area of imaging detector was given. At the same time, the research trends of DIRCM and laser of DIRCM were forecasted in the future.

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return