Volume 47 Issue S1
Jul.  2018
Turn off MathJax
Article Contents

Lei Jingli, Hou Shanglin, Yuan Peng, Wang Daobin, Li Xiaoxiao, Wang Huiqin, Cao Minghua. Investigation on terahertz wave transmission in polyethylene photonic crystal fibers with triangle core[J]. Infrared and Laser Engineering, 2018, 47(S1): 119-124. doi: 10.3788/IRLA201847.S120004
Citation: Lei Jingli, Hou Shanglin, Yuan Peng, Wang Daobin, Li Xiaoxiao, Wang Huiqin, Cao Minghua. Investigation on terahertz wave transmission in polyethylene photonic crystal fibers with triangle core[J]. Infrared and Laser Engineering, 2018, 47(S1): 119-124. doi: 10.3788/IRLA201847.S120004

Investigation on terahertz wave transmission in polyethylene photonic crystal fibers with triangle core

doi: 10.3788/IRLA201847.S120004
  • Received Date: 2018-03-12
  • Rev Recd Date: 2018-05-11
  • Publish Date: 2018-06-25
  • The cutoff frequency of single mode, dispersion and loss of a novel terahertz polyethylene photonic crystal fiber with triangle core were investigated by using the full-vector finite element method (FEM). The results show that the terahertz frequency range of the single-mode is tailored by the cladding pitch, cladding air hole and core air hole diameters. 0.1-5 THz broadband single-mode transmission is obtained and waveguide dispersion is limited in 0.5 ps/(nmkm) for wavelength of 60-450 m, and the transmission loss is 2.67 dB/m at 2.8 THz.
  • [1] Masayoshi Tonouchi. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1:97-105.
    [2] Peter H Siegel. Terahertz technology[J]. IEEE Trans Microw Theory Tech, 2002, 50(3):910.
    [3] Fu Xiaoxia, Chen Mingyang. Terahertz transmission optical fiber with low absorption loss and high birefringence[J]. Acta Phys Sin, 2011, 60(7):074222.
    [4] Zhou Ping, Fan Dianyuan. Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber[J]. Chin Opt Lett, 2011, 9(5):051902.
    [5] Hassani A, Dupuis A, Skorobogatiy M. Porous polymer fibers for low-loss terahertz guiding[J]. Opt Express, 2008, 16(9):6340-6351.
    [6] Hou Shanglin, Zhang Shujun, Li Suoping, et al. Investigation on transmission characteristics of doubly cladding fiber with an inner cladding made of negative refractive index material[J]. Acta Opt Sin, 2011, 31(5):0506004.
    [7] Chen Haibin, Wang Hui, Hou Honglu, et al. A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region[J]. Opt Commus, 2012, 285:3726-3729.
    [8] Atakaramians S, Afshar V S, Fischer B M, et al. Low loss, low dispersion and highly birefringent terahertz porous fibers[J]. Opt Commus, 2009, 282(1):36-38.
    [9] Hou Shanglin, Xue Lemei, Li Suoping, et al. Study on characteristics of acoustic modes via stimulated Brillouin scattering in photonic crystal fiber[J]. Acta Phys Sin, 2012, 61(13):134203.
    [10] Amit Hochman, Yehuda Leviatan. Calculation of confinement losses in photonic crystal fibers by use of a source-model technique[J]. JOSA B, 2005, 22(2):474-480.
    [11] Han H, Park H, Cho M, et al. Terahertz pulse propagation in a plastic photonic crystal fiber[J]. Appl Phys Lett, 2002, 80(10):2634.
    [12] Daniel R Grischkowsky. Terahertz 2-D photonic crystal waveguides[J]. IEEE Microw Wireless Compon Lett, 2008, 18(7):428.
    [13] Kristian Nielsen, Rasmussen Henrik, Adam Aurle J L, et al. Bendable, low-loss Topas fibers for the terahertz frequency range[J]. Opt Express, 2009, 17(10):8592-8601.
    [14] Arti Agrawal, Kejalakshmy N, Uthman M, et al. Ultra low bending loss equiangular spiral photonic crystal fibers in the terahertz regime[J]. AIP Advances, 2012, 2:022140.
    [15] Hansen K P. Dispersion flattened hybrid-core nonlinear photonic crystal fiber[J]. Opt Express, 2003, 11(13):1503-1059.
    [16] Masanori Koshiba. Full-vector analysis of photonic crystal fibers using the finite element method[J]. IEICE Trans Electron, 2002, E85(4):881.
    [17] Birks T A, Knight J C. Endlessly single-mode photonic crystal fiber[J]. Opt Lett, 1997, 22(13):961-963.
    [18] Martin D Mortensen, Jacob Riis Folkenberg. Modal cut-off and the V-parameter in photonic crystal fibers[J]. Opt Lett, 2003, 28:1879-1881.
    [19] Soan Kim, Chul-Sik Kee, Jongmin Lee. Novel optical properties of six-fold symmetric photonic quasicrystal fibers[J]. Opt Express, 2007, 15(20):13221-13226.
    [20] Kunimasa Saitoh, Yukihiro Tsuchida, Masanori koshiba. Endlessly single-mode holey fibers:the influence of core design[J]. Opt Soc Am, 2005, 13(26):10833.
    [21] Li Yuquan, Cui Ming. Optical Waveguide Theory and Technology[M]. Beijing:Posts Telecommunications Press, 2002.
    [22] Bora Ung, Anna Mazhorova, Alexandre Dupuis, et al.Polymer microstructured optical fiber for terahertz wave guiding[J]. Opt Exp, 2011, 19(26):B848-B861.
    [23] Geng Youfu, Tan Xiaoling, Zhong Kai, et al. Low loss plastic terahertz photonic band-gap fibres[J]. Chin Phys Lett, 2008, 25(11):3961.
    [24] Ren Guobin, Wang Zhi, Lou Shuqin, et al. Full-vectorial analysis of complex refractive-index photonic crystal fiber[J]. Opt Express, 2004, 12:1226.
    [25] Geng Y F, Tan X L, Wang P. Transmission loss and dispersion in plastic terahertz photonic band-gap fibers[J]. Appl Phys B, 2008, 91(2):333.
    [26] Lu Jayu, Yu Chinping, Chang Hungchung, et al. Terzhertz air-core microstructure fiber[J]. Appl Phys Lett, 2008, 92:064105.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(286) PDF downloads(47) Cited by()

Related
Proportional views

Investigation on terahertz wave transmission in polyethylene photonic crystal fibers with triangle core

doi: 10.3788/IRLA201847.S120004
  • 1. School of Science,Lanzhou University of Technology,Lanzhou 730050,China;
  • 2. School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China

Abstract: The cutoff frequency of single mode, dispersion and loss of a novel terahertz polyethylene photonic crystal fiber with triangle core were investigated by using the full-vector finite element method (FEM). The results show that the terahertz frequency range of the single-mode is tailored by the cladding pitch, cladding air hole and core air hole diameters. 0.1-5 THz broadband single-mode transmission is obtained and waveguide dispersion is limited in 0.5 ps/(nmkm) for wavelength of 60-450 m, and the transmission loss is 2.67 dB/m at 2.8 THz.

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return