Volume 48 Issue 1
Jan.  2019
Turn off MathJax
Article Contents

Wang Jun, Jiang Yadong. Research development about room temperature terahertz detector array technology with microbolometer structure (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 102001-0102001(10). doi: 10.3788/IRLA201948.0102001
Citation: Wang Jun, Jiang Yadong. Research development about room temperature terahertz detector array technology with microbolometer structure (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 102001-0102001(10). doi: 10.3788/IRLA201948.0102001

Research development about room temperature terahertz detector array technology with microbolometer structure (invited)

doi: 10.3788/IRLA201948.0102001
  • Received Date: 2018-08-18
  • Rev Recd Date: 2018-09-17
  • Publish Date: 2019-01-25
  • Terahertz (THz) detector with thermal sensitive microbolometer structure indicates many prominent features, such as wide band detecting region, large array pixels, high integrated device, real-time imaging, comparing with some other room-temperature THz technologies. Microbolometer structure using VOx thin film as sensitive material has been successfully fabricated uncooled infrared focal plane array detector, but unsuitable for THz detection for very low THz wave absorption ratio. So some special design should be presented in the microbolometer structure to achieve high performance THz detector. Room-temperature THz technologies and development of microbolometer type THz detector array were introduced in this article briefly, and also the research about THz absorption material or structure in University of Electronic Science and Technology of China was presented in the paper.
  • [1] Tassin P, Koschny T, Soukoulis C M. Graphene for terahertz applications[J]. Science, 2013, 341:620-621.
    [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1:97-105,
    [3] Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417:156-159.
    [4] Vitiello M S, Consolino L, Bartalini S, et al. Quantum-limited frequency fluctuations in a terahertz laser[J]. Nature Photonics, 2012, 6:525-528.
    [5] Cai X, Sushkov A B, Suess R. J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in grapheme[J]. Nature Nanotechnology, 2014, 9:814-819.
    [6] Sizov F, Rogalski A. THz detectors[J]. Progress in Quantum Electronics, 2010, 34:278-347.
    [7] Ignacio I, Carlos D, Jean-Francois M, et al. Operation of GaN planar nanodiodes as THz detectors and mixers[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4:670-677.
    [8] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11:865-871.
    [9] Chen S L, Chang Y C, Zhang C, et al. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite[J]. Nature Photonics, 2014, 8:537-542.
    [10] Marinchio H, Chusseau L, Torres J, et al. Room-temperature terahertz mixer based on the simultaneous electronic and optical excitations of plasma waves in a field effect transistor[J]. Applied Physics Letters, 2010, 96:013502.
    [11] Knap W, Rumyantsev S, Vitiello M S, et al. Nanometer size field effect transistors for terahertz detectors[J]. Nanotechnology, 2013, 24:214002.
    [12] Sherry H, Grzyb J, Zhao Y, et al. A 1k pixel CMOS camera chip for 25 fps real-time terahertz imaging applications[C]//ISSCC, 2012:252-254.
    [13] Han R, Zhang Y, Kim Y, et al. 280 GHz and 860 GHz image sensors using Schottky-barrier diodes in 0.13m digital CMOS[C]//ISSCC, 2012:254-256.
    [14] Jiang Y, Jin B, Wu W, et al. Terahertz detectors based on superconducting hot electron bolometers[J]. Science China Information Sciences, 2012, 55:64-71.
    [15] Xiao-Li Y, O'Brien J. A proposal for optical terahertz detection with externally biased nanopore superlattices[J]. Applied Physics Letters, 2014, 104:031104.
    [16] Huhn A K, Spickermann G, Ihring A, et al. Uncooled antenna-coupled terahertz detectors with 22s response time based on BiSb/Sb thermocouples[J]. Applied Physics Letters, 2013, 102:121102.
    [17] Romano M, Chulkov A, Sommier A, et al. Broadband sub-terahertz camera based on photothermal conversion and IR thermography[J]. Journal of Infrared Millimeter and Terahertz Waves, 2016, 37(5):448-461.
    [18] Escorcia I, Grant J, Gough J, et al. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode[J]. Optics Letters, 2016, 41(14):3261-3264.
    [19] Wen Y, Jia D, Wei Ma, et al. Photomechanical meta-molecule array for real-time terahertz imaging[J]. Microsystems Nanoengineering, 2017, 3:17071.
    [20] Lee A W, Hu Q. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array[J]. Optics Letter, 2005, 30(19):2563.
    [21] Sizov F. Terahertz radiation detectors:the state of the art[J]. Semiconductor Science and Technology, 2018, 33:123001.
    [22] Aseev A L, Esaev D G, Dem'yanenko M A, et al. Terahertz imaging and radiocopy with 160120 microbolometer 90 FPS camera[C]//Proceedings of FEL, 2007:83-85.
    [23] Coppinger M, Sustersic N A, Kolodzey J, et al. Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging[J]. Optical Engineering, 2011, 50(5):053206.
    [24] Oda N, Komiyama S, Hosako I. Bolometer-type THz-wave detector:USA, US200810237469[P]. 2008-08-02.
    [25] Oda N, Yoneyama H, Sasaki T, et al. Detection of terahertz radiation from quantum cascade laser using vanadium oxide microbolometer focal plane arrays[C]//SPIE, 2008, 6940:69402Y.
    [26] Hosako I, Sekine N, Oda N, et al. A real-time terahertz imaging system consisting of terahertz quantum cascade laser and uncooled microbolometer array detector[C]//SPIE, 2010, 8023:80230A.
    [27] Oda N, Lee A W, Ishi T, et al. Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser[C]//SPIE, 2012, 8363:83630A.
    [28] Oda N, Ishi T, Kurashina S, et al. Palm-size and real-time terahertz imager, and its application to development of terahertz sources[C]//SPIE, 2013, 8716:871603.
    [29] Oda N, Okubo S, Sudou T, et al. Image reconstruction method for non-synchronous THz signals[C]//SPIE, 2014, 9102:910202.
    [30] Nemoto N, Kanda N, Imai R, et al. High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(2):175-182.
    [31] Pope T, Doucet M, Dupont F, et al. Uncooled detector, optics, and camera development for THz imaging[C]//SPIE, 2009, 7311:73110L.
    [32] Oulachgar H, Marchese L, Alain C, et al. Development of MEMS microbolometer detector for THz applications[C]//IEEE Conference:Infrared Millimeter and Terahertz Waves, 2010:1-2.
    [33] Oulachgar H, Bolduc M, Tremblay M, et al. Simulation and fabrication of large area uncooled microbolometers for Terahertz wave detection[C]//IEEE Conference:Infrared Millimeter and Terahertz Waves, 2011:1-2.
    [34] Bergeron A, Marchese L, Savard , et al. Resolution capability comparison of infrared and terahertz imagers[C]//SPIE, 2011, 8188:81880I.
    [35] Blanchard N, Marchese L, Martel A, et al. Catadioptric optics for high-resolution terahertz imager[C]//SPIE, 2012, 8363:83630B.
    [36] Marchese L, Terroux M, Genereux F, et al. Review of the characteristics of 384288 pixel THz camera for seethrough imaging[C]//SPIE, 2013, 8900:890009.
    [37] Oulachgar H, Mauskopf P, Bolduc M, et al. Design and microfabrication of frequency selective uncooled microbolometer focal plane array for terahertz imaging[C]//IEEE Conference:Infrared Millimeter and Terahertz Waves, 2013:1-2.
    [38] Marchese L, Terroux M, Dufour D, et al. Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera[C]//SPIE, 2014, 9083:90832G.
    [39] Marchese L E, Terroux M, Doucet M, et al. Reflection imaging in the millimeter-wave rage using a video-rate terahertz camera[C]//SPIE, 2016, 9836:98362S.
    [40] Marchese L, Doucet M, Blanchard N, et al. Overcoming the challenges of active THz/MM-wave imaging:an optics perspective[C]//SPIE, 2018, 10639:106392B.
    [41] Simoens F, Durand T, Meilhan J, et al. Terahertz imaging with a quantum cascade laser and amorphous-silicon microbolometer array[C]//SPIE, 2009, 7485:74850M.
    [42] Nguyen D, Simoens F, Ouvrier-Buffet J, et al. Broadband THz uncooled antenna-coupled microbolometer array-electromagnetic design, simulations and measurements[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(3):299-305.
    [43] Simoens F, Meilhan J, Gidon S, et al. Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging[C]//SPIE, 2013, 8846:88460O.
    [44] Gou J, Jiang Y, Wang J. Terahertz absorption characteristics of NiCr film in a microbolometer focal plane array[J]. Micro and Nano Letters, 2014, 9(3):215-217.
    [45] Gou J, Wang J, Li W, et al. Terahertz absorption characteristics of NiCr film and enhanced absorption by reactive ion etching in a microbolometer focal plane array[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34:431-436.
    [46] Gou J, Wang J, Li W, et al. Study on optical properties of nanostructured NiCr filmprepared by magnetron sputtering and RIE for terahertz applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(9):838-844.
    [47] Gou J, Zhang T, Wang J, et al. Spiral antenna-coupled microbridge structures for THz application[J]. Nanoscale Research Letters, 2017, 12:91.
    [48] Gou J, Niu Q, Liang K, et al. Frequency modulation and absorption improvement of THz micro-bolometer with micro-bridge structure by novel spiral-type antennas[J]. Nanoscale Research Letters, 2018, 13:74.
    [49] Wang J, Li W, Gou J, et al. Fabrication and parameters calculation of room temperature terahertz detector with micro-bridge structure[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36:49-59.
    [50] Gou J, Wang J, Zheng X, et al. Detection of terahertz radiation from 2.52 THz CO2 laser using a 320240 vanadium oxide microbolometer focal plane array[J]. RSC Advances, 2015, 5(102):84252-84256.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(743) PDF downloads(166) Cited by()

Related
Proportional views

Research development about room temperature terahertz detector array technology with microbolometer structure (invited)

doi: 10.3788/IRLA201948.0102001
  • 1. Sata Key Laboratory of Electric Thin Films and Integrated Devices,School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China

Abstract: Terahertz (THz) detector with thermal sensitive microbolometer structure indicates many prominent features, such as wide band detecting region, large array pixels, high integrated device, real-time imaging, comparing with some other room-temperature THz technologies. Microbolometer structure using VOx thin film as sensitive material has been successfully fabricated uncooled infrared focal plane array detector, but unsuitable for THz detection for very low THz wave absorption ratio. So some special design should be presented in the microbolometer structure to achieve high performance THz detector. Room-temperature THz technologies and development of microbolometer type THz detector array were introduced in this article briefly, and also the research about THz absorption material or structure in University of Electronic Science and Technology of China was presented in the paper.

Reference (50)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return