Volume 48 Issue 6
Jul.  2019
Turn off MathJax
Article Contents

Zhang Zibang, Lu Tian'ao, Peng Junzheng, Zhong Jingang. Fourier single-pixel imaging techniques and applications[J]. Infrared and Laser Engineering, 2019, 48(6): 603002-0603002(19). doi: 10.3788/IRLA201948.0603002
Citation: Zhang Zibang, Lu Tian'ao, Peng Junzheng, Zhong Jingang. Fourier single-pixel imaging techniques and applications[J]. Infrared and Laser Engineering, 2019, 48(6): 603002-0603002(19). doi: 10.3788/IRLA201948.0603002

Fourier single-pixel imaging techniques and applications

doi: 10.3788/IRLA201948.0603002
  • Received Date: 2019-01-05
  • Rev Recd Date: 2019-02-03
  • Publish Date: 2019-06-25
  • Imaging at non-visible wavebands is one of the challenges in optical imaging. As a novel computational imaging technique, single-pixel imaging based on spatial light modulation is able to obtain spatial information of object via a non-spatially-resolving detector. Thus, single-pixel imaging technique is a potential approach to the challenge of imaging at non-visible wavebands. In recent years, Fourier single-pixel imaging is demonstrated to be able to offer high-quality and high-efficiency image acquisition. Since proposed in 2015, Fourier single-pixel imaging technique has been extended a series of techniques ranging from two-dimensional imaging to three-dimensional imaging, from mono-chromatic imaging to true-color imaging, from static imaging to dynamic imaging, from single-modality imaging to multi-modality imaging, and from photography to microscopy. The principle and related applications of Fourier single-pixel imaging were reviewed. Some challenging problems and prospects of the technique were also discussed.
  • [1] Butler P D, Silverstein S M, Dakin S C. Visual perception and its impairment in schizophrenia[J]. Biological Psychiatry, 2008, 64(1):40-47.
    [2] Nakano A. Spinning-disk confocal microscopy-a cutting-edge tool for imaging of membrane traffic[J]. Cell Structure and Function, 2002, 27(5):349-355.
    [3] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):83-91.
    [4] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 2013, 21(20):23068-23074.
    [5] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 2016, 6:24752.
    [6] Rousset F, Ducros N, Peyrin F, et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera[J]. Optics Express, 2018, 26(8):10550-10558.
    [7] Zhang Z, Liu S, Peng J, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 2018, 5(3):315-319.
    [8] Studer V, Bobin J, Chahid M, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proceedings of the National Academy of Sciences, 2012, 109(26):E1679-E1687.
    [9] Hahn J, Debes C, Leigsnering M, et al. Compressive sensing and adaptive direct sampling in hyperspectral imaging[J]. Digital Signal Processing, 2014, 26:113-126.
    [10] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 2015, 5:10669.
    [11] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12):121105.
    [12] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8):605.
    [13] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6):e1600190.
    [14] Gibson G M, Sun B, Edgar M P, et al. Real-time imaging of methane gas leaks using a single-pixel camera[J]. Optics Express, 2017, 25(4):2998-3005.
    [15] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 2014, 1(5):285-289.
    [16] Zhang Y, Edgar M P, Sun B, et al. 3D single-pixel video[J]. Journal of Optics, 2016, 18(3):035203.
    [17] Goldstein T, Xu L, Kelly K F, et al. The stone transform:Multi-resolution image enhancement and compressive video[J]. IEEE Transactions on Image Processing, 2015, 24(12):5581-5593.
    [18] Zhang Z, Wang X, Zheng G, et al. Fast Fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 2017, 7(1):12029.
    [19] Higham C F, Murray-Smith R, Padgett M J, et al. Deep learning for real-time single-pixel video[J]. Scientific Reports, 2018, 8(1):2369.
    [20] Zheng J, Jacobs E L. Video compressive sensing using spatial domain sparsity[J]. Optical Engineering, 2009, 48(8):087006.
    [21] Sankaranarayanan A C, Xu L, Studer C, et al. Video compressive sensing for spatial multiplexing cameras using motion-flow models[J]. SIAM Journal on Imaging Sciences, 2015, 8(3):1489-1518.
    [22] Xu L, Sankaranarayanan A, Studer C, et al. Multiscale compressive video acquisition[C]//Computational Optical Sensing and Imaging. Optical Society of America, 2013:CW2C. 4.
    [23] Wu Y, Ye P, Mirza I O, et al. Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM)[J]. Optics Express, 2010, 18(24):24565-24578.
    [24] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 2013, 340(6134):844-847.
    [25] Howland G A, Dixon P B, Howell J C. Photon-counting compressive sensing laser radar for 3D imaging[J]. Applied Optics, 2011, 50(31):5917-5920.
    [26] Howland G A, Lum D J, Ware M R, et al. Photon counting compressive depth mapping[J]. Optics Express, 2013, 21(20):23822-23837.
    [27] Sun M J, Edgar M P, Phillips D B, et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning[J]. Optics Express, 2016, 24(10):10476-10485.
    [28] Edgar M P, Sun M J, Gibson G M, et al. Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera[C]//Optical Trapping and Optical Micromanipulation XⅢ. International Society for Optics and Photonics, 2016, 9922:99221B.
    [29] Zhang Z, Zhong J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels[J]. Optics Letters, 2016, 41(11):2497-2500.
    [30] Durn V, Clemente P, Fernndez-Alonso M, et al. Single-pixel polarimetric imaging[J]. Optics Letters, 2012, 37(5):824-826.
    [31] Soldevila F, Irles E, Durn V, et al. Single-pixel polarimetric imaging spectrometer by compressive sensing[J]. Applied Physics B, 2013, 113(4):551-558.
    [32] Welsh S S, Edgar M P, Bowman R, et al. Near video-rate linear Stokes imaging with single-pixel detectors[J]. Journal of Optics, 2015, 17(2):025705.
    [33] Tajahuerce E, Durn V, Clemente P, et al. Image transmission through dynamic scattering media by single-pixel photodetection[J]. Optics Express, 2014, 22(14):16945-16955.
    [34] Durn V, Soldevila F, Irles E, et al. Compressive imaging in scattering media[J]. Optics Express, 2015, 23(11):14424-14433.
    [35] Greenberg J, Krishnamurthy K, Brady D. Compressive single-pixel snapshot x-ray diffraction imaging[J]. Optics Letters, 2014, 39(1):111-114.
    [36] Huynh N, Zhang E, Betcke M, et al. Single-pixel optical camera for video rate ultrasonic imaging[J]. Optica, 2016, 3(1):26-29.
    [37] Yang J, Gong L, Xu X, et al. Motionless volumetric photoacoustic microscopy with spatially invariant resolution[J]. Nature Communications, 2017, 8(1):780.
    [38] Clemente P, Durn V, Tajahuerce E, et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 2013, 38(14):2524-2527.
    [39] Soldevila F, Durn V, Clemente P, et al. Phase imaging by spatial wavefront sampling[J]. Optica, 2018, 5(2):164-174.
    [40] Lochocki B, Gambn A, Manzanera S, et al. Single pixel camera ophthalmoscope[J]. Optica, 2016, 3(10):1056-1059.
    [41] Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry[J]. Science, 2018, 360(6394):1246-1251.
    [42] Guo Q, Chen H, Weng Z, et al. Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition[J]. Optics Express, 2015, 23(23):29639-29646.
    [43] Xu Z H, Chen W, Penuelas J, et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 2018, 26(3):2427-2434.
    [44] Yu W K, Liu X F, Yao X R, et al. Complementary compressive imaging for the telescopic system[J]. Scientific Reports, 2014, 4:5834.
    [45] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 2016, 6:26133.
    [46] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13):131110.
    [47] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
    [48] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7:12010.
    [49] Sun M J, Meng L T, Edgar M P, et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 2017, 7(1):3464.
    [50] Xu Z H, Chen W, Penuelas J, et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 2018, 26(3):2427-2434.
    [51] Salvador-Balaguer E, Latorre-Carmona P, Chabert C, et al. Low-cost single-pixel 3D imaging by using an LED array[J]. Optics Express, 2018, 26(12):15623-15631.
    [52] Durn V, Clemente P, Fernndez-Alonso M, et al. Single-pixel polarimetric imaging[J]. Optics Letters, 2012, 37(5):824-826.
    [53] Zhang Z, Jiao S, Yao M, et al. Secured single-pixel broadcast imaging[J]. Optics Express, 2018, 26(11):14578-14591.
    [54] Zhang Z, Su Z, Deng Q, et al. Lensless single-pixel imaging by using LCD:application to small-size and multi-functional scanner[J]. Optics Express, 2019, 27(3):3731-3745.
    [55] Liu B L, Yang Z H, Liu X, et al. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform[J]. Journal of Modern Optics, 2017, 64(3):259-264.
    [56] Rousset F, Ducros N, Farina A, et al. Adaptive basis scan by wavelet prediction for single-pixel imaging[J]. IEEE Transactions on Computational Imaging, 2017, 3(1):36-46.
    [57] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 2015, 6:6225.
    [58] Peng J, Yao M, Cheng J, et al. Micro-tomography via single-pixel imaging[J]. Opt Express, 2018, 26(24):31094-31105.
    [59] Zhang Z, Wang X, Zheng G, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 2017, 25(16):19619-19639.
    [60] Mitra S K, Kuo Y. Digital Signal Processing:a Computer-Based Approach[M]. New York:McGraw-Hill, 2006.
    [61] Floyd R W. An adaptive algorithm for spatial gray-scale[C]//Proceedings of the Society for Information Display, 1976, 17:75-77.
    [62] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 1983, 22(24):3977-3982.
    [63] Born M, Wolf E. Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. Berlin:Elsevier, 1980.
    [64] Longere P, Zhang X, Delahunt P B, et al. Perceptual assessment of demosaicing algorithm performance[J]. Proceedings of the IEEE, 2002, 90(1):123-132.
    [65] Malvar H S, He L-W, Cutler R. High-quality linear interpolation for demosaicing of Bayer-patterned color images[C]//2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004:iii-485.
    [66] Jiang H, Liu Y, Li X, et al. Point spread function measurement based on single-pixel imaging[J]. IEEE Photonics Journal, 2018, 10(6):1-15.
    [67] Chen H, Shi J, Liu X, et al. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition[J]. Optics Communications, 2018, 413:269-275.
    [68] Zheng G, Kolner C, Yang C. Microscopy refocusing and dark-field imaging by using a simple LED array[J]. Optics Letters, 2011, 36(20):3987-3989.
    [69] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letters, 2014, 39(5):1326-1329.
    [70] Zhang Z, Yao M, Li X, et al. Simultaneous functional and structural imaging for photovoltaic devices[J]. Solar Energy Materials and Solar Cells, 2019, 193:101-106.
    [71] Li S, Zhang Z, Ma X, et al. Shadow-free single-pixel imaging[J]. Optics Communications, 2017, 403:257-261.
    [72] Sun M J, Huang J Y, Penuelas J. Suppressing the noise in binarized Fourier single-pixel imaging utilizing defocus blur[J]. Optics and Lasers in Engineering, 2018, 108:15-18.
    [73] Zhang Y, Suo J, Wang Y, et al. Doubling the pixel count limitation of single-pixel imaging via sinusoidal amplitude modulation[J]. Optics Express, 2018, 26(6):6929-6942.
    [74] Khamoushi S M M, Tavassoli S H. Apodized Fourier single-pixel imaging by changing the contrast of patterns using Norton-Beer functions[J]. Journal of Optics, 2019, 21(2):025702.
    [75] Bian L, Suo J, Hu X, et al. Efficient single pixel imaging in Fourier space[J]. Journal of Optics, 2016, 18(8):085704.
    [76] Xu B, Jiang H, Zhao H, et al. Projector-defocusing rectification for Fourier single-pixel imaging[J]. Optics Express, 2018, 26(4):5005-5017.
    [77] Jiang H, Liu H, Li X, et al. Efficient regional single-pixel imaging for multiple objects based on projective reconstruction theorem[J]. Optics and Lasers in Engineering, 2018, 110:33-40.
    [78] Huang J, Shi D, Yuan K, et al. Computational-weighted Fourier single-pixel imaging via binary illumination[J]. Optics Express, 2018, 26(13):16547-16559.
    [79] Xiao Y, Zhou L, Chen W. Fourier spectrum retrieval in single-pixel imaging[J]. IEEE Photonics Journal, 2019, 11(2):1-11.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1458) PDF downloads(469) Cited by()

Related
Proportional views

Fourier single-pixel imaging techniques and applications

doi: 10.3788/IRLA201948.0603002
  • 1. Department of Optoelectronic Engineering,Jinan University,Guangzhou 510632,China

Abstract: Imaging at non-visible wavebands is one of the challenges in optical imaging. As a novel computational imaging technique, single-pixel imaging based on spatial light modulation is able to obtain spatial information of object via a non-spatially-resolving detector. Thus, single-pixel imaging technique is a potential approach to the challenge of imaging at non-visible wavebands. In recent years, Fourier single-pixel imaging is demonstrated to be able to offer high-quality and high-efficiency image acquisition. Since proposed in 2015, Fourier single-pixel imaging technique has been extended a series of techniques ranging from two-dimensional imaging to three-dimensional imaging, from mono-chromatic imaging to true-color imaging, from static imaging to dynamic imaging, from single-modality imaging to multi-modality imaging, and from photography to microscopy. The principle and related applications of Fourier single-pixel imaging were reviewed. Some challenging problems and prospects of the technique were also discussed.

Reference (79)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return