Volume 48 Issue 6
Jul.  2019
Turn off MathJax
Article Contents

Sun Mingjie, Zhang Jiamin. Single-pixel imaging and its application in three-dimensional reconstruction[J]. Infrared and Laser Engineering, 2019, 48(6): 603003-0603003(11). doi: 10.3788/IRLA201948.0603003
Citation: Sun Mingjie, Zhang Jiamin. Single-pixel imaging and its application in three-dimensional reconstruction[J]. Infrared and Laser Engineering, 2019, 48(6): 603003-0603003(11). doi: 10.3788/IRLA201948.0603003

Single-pixel imaging and its application in three-dimensional reconstruction

doi: 10.3788/IRLA201948.0603003
  • Received Date: 2019-04-05
  • Rev Recd Date: 2019-05-17
  • Publish Date: 2019-06-25
  • Unlike a digital cameras using a photodetector array to capture images, single-pixel imaging reconstructs images by sampling a scene with a series of masks and associating the knowledge of these masks with the corresponding intensity measured with a single-pixel detector. Though not performing as well as digital cameras in conventional visible imaging, single-pixel imaging has been demonstrated to be advantageous in unconventional applications, such as multi-wavelength imaging, terahertz imaging, X-ray imaging, and three-dimensional imaging. The developments and working principles of single-pixel imaging were reviewed, a mathematical interpretation was given, and the key elements were analyzed. The research works of three-dimensional single-pixel imaging and their potential applications were further reviewed and discussed.
  • [1] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5):R3429-R3432.
    [2] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6):061802.
    [3] Duarte M F, Davenport M A, Takbar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):83-91.
    [4] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5):053840.
    [5] Nipkow P. Optical Disk:German Patent, 30105[P]. 1884-1-6.
    [6] Baird J L. Apparatus for Transmitting Views or Images to a Distance:US, Patent 1699270[P]. 1929-01-15.
    [7] Mertz P, Gray F. Atheory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television[J]. Bell System Technical Journal, 1934, 13(3):464-515.
    [8] Kane T J, Byvik C E, Kozlovsky W J, et al. Coherent laser radar at 1.06m sing Nd:YAG lasers[J]. Optics Letters, 1987, 12(4):239-241.
    [9] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16):1716-1718.
    [10] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning x-ray diffraction microscopy[J]. Science, 2008, 321(5887):379-382.
    [11] Scarcelli G, Berardi V, Shih Y H. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?[J]. Physical Review Letters, 2006, 96(6):063602.
    [12] Shih Y H. Quantum imaging[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2007, 13(4):1016-1030.
    [13] Bennink R S, Bentley S J, Boyd R W. Two-photon coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11):113601.
    [14] Gatti A, Brambilla E, Bache M, et al. Correlated imaging:quantum and classical[J]. Physical Review A, 2004, 70(1):13801-13802.
    [15] Valencia A, Scarcelli G, D'Angelo M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 2005, 94(6):063601.
    [16] Zhai Y H, Chen X H, Zhang D, et al. Two-photon interference with true thermal light[J]. Physical Review A, 2005, 72(4):043805.
    [17] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13):131110.
    [18] Erkmen B I, Shapiro J H. Unified theory of ghost imaging with Gaussian-state light[J]. Physical Review A, 2012, 77(4):140-140.
    [19] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 2012, 11(4):949-993.
    [20] Altmann Y, McLaughlin S, Padgett M J, et al. Quantum-inspired computational imaging[J]. Science, 2018, 361:6403.
    [21] Cands E J. Compressive sampling[C]//Proceedings of the 2006 International Congress of Mathematicians, 2006:1433-1452.
    [22] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
    [23] Cands E, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3):969-985.
    [24] Baraniuk R G. Compressive sensing[lecture notes] [J]. IEEE Signal Processing Magazine, 2007, 24(4):118-120.
    [25] Studer V, Jrome B, Chahid M, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26):E1679-E1687.
    [26] Welsh S S, Edgar M P, Edgar S S, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 2013, 21(20):23068-23074.
    [27] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 2014, 1(5):285-289.
    [28] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 2015, 5:10669.
    [29] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 2016, 6:24752.
    [30] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8):605-609.
    [31] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6):e1600190.
    [32] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 2004, 92(9):93901-93903.
    [33] Greenberg J, Krishnamurthy K, David B. Compressive single-pixel snapshot X-ray diffraction imaging[J]. Optics Letters, 2014, 39(1):111-114.
    [34] Zhang A X, He Y H, Wu L A, et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 2018, 5(4):374-377.
    [35] Ryczkowski P, Barbier M, Friberg A T, et al. Ghost imaging in the time domain[J]. Nature Photonics, 2016, 10(3):167-170.
    [36] Faccio D. Optical communications:Temporal ghost imaging[J]. Nature Photonics, 2016, 10(3):150-152.
    [37] Devaux F, Moreau P A, Denis S, et al. Computational temporal ghost imaging[J]. Optica, 2016, 3(7):698-701.
    [38] Howland G A, Dixon P B, Howell J C. Photon-counting compressive sensing laser radar for 3D imaging[J]. Applied Optics, 2011, 50(31):5917-5920.
    [39] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101(14):141123.
    [40] Howland G A, Lum D J, Ware M R, et al. Photon counting compressive depth mapping[J]. Optics Express, 2013, 21(20):23822-23837.
    [41] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics and Photonics Journal, 2013, 3(2):83-85.
    [42] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 2013, 340(6134):844-847.
    [43] Yu H, Li E, Gong W, et al. Structured image reconstruction for three-dimensional ghost imaging lidar[J]. Optics Express, 2015, 23(11):14541-14551.
    [44] Yu W K, Yao X R, Liu X F, et al. Three-dimensional single-pixel compressive reflectivity imaging based on complementary modulation[J]. Applied Optics, 2015, 54(3):363-367.
    [45] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7:12010.
    [46] Zhang Z, Zhong J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels[J]. Optics Letters, 2016, 41(11):2497-2500.
    [47] Zhang Z B, Liu S J, Peng J Z, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 2018, 5(3):315-319.
    [48] Salvador-Balaguer E, Latorre-Carmona P, Chabert C, et al. Low-cost single-pixel 3D imaging by using an LED array[J]. Optics Express, 2018, 26(12):15623-15631.
    [49] Massa J S, Wallace A M, Buller G S, et al. Laser depth measurement based on time-correlated single-photon counting[J]. Optics Letters, 1997, 22(8):543-545.
    [50] McCarthy A, Collins R J, Krichel N J, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting[J]. Applied Optics, 2009, 48(32):6241-6251.
    [51] McCarthy A, Krichel N J, Gemmell N R, et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection[J]. Optics Express, 2013, 21(7):8904-8915.
    [52] Lochocki B, Gambn A, Manzanera S, et al. Single pixel camera ophthalmoscope[J]. Optica, 2016, 3(10):1056-1059.
    [53] Sun M J, Edgar M P, Phillips D B, et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning[J]. Optics Express, 2016, 24(10):10476-10485.
    [54] Wang L, Zhao S. Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform[J]. Photonics Research, 2016, 4(6):240-244.
    [55] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 2015, 6:6225.
    [56] Czajkowski K M, Pastuszczak A, Kotynski R. Real-time single-pixel video imaging with Fourier domain regularization[J]. Optics Express, 2018, 26(16):20009-20022.
    [57] Amann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 2013, 3:1545.
    [58] Yu W K, Li M F, Yao X R, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 2014, 22(6):7133-7144.
    [59] Rousset F, Ducros N, Farina A, et al. Adaptive basis scan by wavelet prediction for single-pixel imaging[J]. IEEE Transactions on Computational Imaging, 2017, 3(1):36-46.
    [60] Czajkowski K M, Pastuszczak A, Kotyński R. Single-pixel imaging with Morlet wavelet correlated random patterns[J]. Scientific Reports, 2018, 8(1):466.
    [61] Sun M J, Meng L T, Edgar M P, et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 2017, 7(1):3464.
    [62] Aravind R, Cash G L, Worth J P. On implementing the JPEG still-picture compression algorithm[C]//Advances in Intelligent Robotics Systems Conference, 1989, 1199:799-808.
    [63] Cheng X, Liu Q, Luo K H, et al. Lensless ghost imaging with true thermal light[J]. Optics Letters, 2009, 34(5):695-697.
    [64] Ferri F, Magatti D, Lugiato L, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104(25):253603.
    [65] Agafonov I N, Luo K H, Wu L A, et al. High-visibility, high-order lensless ghost imaging with thermal light[J]. Optics Letters, 2010, 35(8):1166-1168.
    [66] Sun B, Welsh S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20(15):16892-16901.
    [67] Sun M J, Li M F, Wu L A. Nonlocal imaging of a reflective object using positive and negative correlations[J]. Applied Optics, 2015, 54(25):7494-7499.
    [68] Song S C, Sun M J, Wu L A. Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation[J]. Optics Communications, 2016, 366:8-12.
    [69] Sun M J, He X, Li M F, et al. Thermal light subwavelength diffraction using positive and negative correlations[J]. Chinese Optics Letters, 2016, 14(4):15-19.
    [70] Candes E J, Tao T. Near-optimal signal recovery from random projections:Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12):5406-5425.
    [71] Sankaranarayanan A C, Studer C, Baraniuk R G. CS-MUVI:Video compressive sensing for spatial-multiplexing cameras[C]//IEEE International Conference on Computational Photography, 2012:6215212.
    [72] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 2016, 6:26133.
    [73] Xu Z H, Chen W, Penuelas J, et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 2018, 26(3):2427-2434.
    [74] Komatsu K, Ozeki Y, Nakano Y, et al. Ghost imaging using integrated optical phased array[C]//Optical Fiber Communication Conference. IEEE, 2017:4.
    [75] Li L J, Chen W, Zhao X Y, et al. Fast Optical phased array calibration technique for random phase modulation LiDAR[J]. IEEE Photonics Journal, 2018, 11(1):1-10.
    [76] Sun M J, Zhao X Y, Li L J. Imaging using hyperuniform sampling with a single-pixel camera[J]. Optics Letters, 2018, 43(16):4049-4052.
    [77] Phillips D B, Sun M J, Taylor J M, et al. Adaptive foveated single-pixel imaging with dynamic super-sampling[J]. Science Advances, 2017, 3(4):1601782.
    [78] Herman M, Tidman J, Hewitt D, et al. A higher-speed compressive sensing camera through multi-diode design[C]//SPIE Defense, Security, Sensing, 2013, 8717:871706.
    [79] Sun M J, Chen W, Liu T F, et al. Image retrieval in spatial and temporal domains with a quadrant detector[J]. IEEE Photonics Journal, 2017, 9(5):1-6.
    [80] Dickson R M, Norris D J, Tzeng Y L, et al. Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels[J]. Science, 1996, 274(5289):966-968.
    [81] Udupa J K, Herman G T. 3D Imaging in Medicine[M]. Boca Raton:CRC Press, 1991.
    [82] Bosch T, Lescure M, Myllyla R, et al. Laser ranging:A critical review of usual techniques for distance measurement[J]. Optical Engineering, 2001, 40(1):10-19.
    [83] Schwarz B. Lidar:Mapping the world in 3D[J]. Nature Photonics, 2010, 4(7):429-430.
    [84] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics and Lasers in Engineering, 2010, 48(2):149-158.
    [85] Cho M, Javidi B. Three-dimensional photon counting double-random-phase encryption[J]. Optics Letters, 2013, 38(17):3198-3201.
    [86] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 2012, 3(3):745.
    [87] Keppel E. Approximating complex surfaces by triangulation of contour lines[J]. IBM Journal of Research and Development, 1975, 19(1):2-11.
    [88] Boyde A. Stereoscopic images in confocal (tandem scanning) microscopy[J]. Science, 1985, 230(4731):1270-1272.
    [89] Woodham R J. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering, 1980, 19(1):139-144.
    [90] Horn B K P. Robot Vision[M]. US:MIT Press, 1986.
    [91] Horn B K P, Brooks M J. Shape from Shading[M]. US:MIT Press, 1989.
    [92] Zhang Y, Edgar M P, Sun B, et al. 3D single-pixel video[J]. Journal of Optics, 2016, 18(3):035203.
    [93] Geng J. Structured-light 3D surface imaging:A tutorial[J]. Advances in Optics and Photonics, 2011, 3(2):128-160.
    [94] Jiang C F, Bell T, Zhang S. High dynamic range real-time 3D shape measurement[J]. Optics Express, 2016, 24(7):7337-7346.
    [95] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 2009, 458(7242):1145-1149.
    [96] Diebold E D, Buckley B W, Gossett D R, et al. Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy[J]. Nature Photonics, 2013, 7(10):806-810.
    [97] Tajahuerce E, Durn V, Clemente P, et al. Image transmission through dynamic scattering media by single-pixel photodetection[J]. Optics Express, 2014, 22(14):16945-16955.
    [98] Guo Q, Chen H W, Weng Z L, et al. Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition[J]. Optics Express, 2015, 23(23):29639-29646.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1201) PDF downloads(319) Cited by()

Related
Proportional views

Single-pixel imaging and its application in three-dimensional reconstruction

doi: 10.3788/IRLA201948.0603003
  • 1. School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China

Abstract: Unlike a digital cameras using a photodetector array to capture images, single-pixel imaging reconstructs images by sampling a scene with a series of masks and associating the knowledge of these masks with the corresponding intensity measured with a single-pixel detector. Though not performing as well as digital cameras in conventional visible imaging, single-pixel imaging has been demonstrated to be advantageous in unconventional applications, such as multi-wavelength imaging, terahertz imaging, X-ray imaging, and three-dimensional imaging. The developments and working principles of single-pixel imaging were reviewed, a mathematical interpretation was given, and the key elements were analyzed. The research works of three-dimensional single-pixel imaging and their potential applications were further reviewed and discussed.

Reference (98)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return