Volume 48 Issue 6
Jul.  2019
Turn off MathJax
Article Contents

Deng Chao, Suo Jinli, Zhang Zhili, Dai Qionghai. Coding and decoding of optical information in single-pixel imaging[J]. Infrared and Laser Engineering, 2019, 48(6): 603004-0603004(11). doi: 10.3788/IRLA201948.0603004
Citation: Deng Chao, Suo Jinli, Zhang Zhili, Dai Qionghai. Coding and decoding of optical information in single-pixel imaging[J]. Infrared and Laser Engineering, 2019, 48(6): 603004-0603004(11). doi: 10.3788/IRLA201948.0603004

Coding and decoding of optical information in single-pixel imaging

doi: 10.3788/IRLA201948.0603004
  • Received Date: 2019-01-15
  • Rev Recd Date: 2019-02-25
  • Publish Date: 2019-06-25
  • Single-pixel imaging aims to record the target scene information via a single element detector. For its high sensitivity and wide range of spectrum response, single-pixel imaging is attracting a lot of attentions. Based on the coded acquisition and decoded reconstruction of high dimensional optical signal, single-pixel imaging can meet the demanding requirements in some challenging cases. The research background of single-pixel imaging was firstly introduced, and its imaging principle and reconstruction algorithms were briefly described. Then, from the perspective of coding and decoding of optical information, the current researches and advanced technologies were systematically reviewed. Besides, the existing problems in single-pixel imaging, and its future extensions and potential applications were discussed.
  • [1] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Appl Phys Lett, 2012, 101(14):141123.
    [2] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Appl Phys Lett, 2011, 98(11):111115.
    [3] Magana-Loaiza O S, Howland G A, Malik M, et al. Compressive object trackingusing entangled photons[J]. Appl Phys Lett, 2013, 102(23):231104.
    [4] Clemente P, Durn V, Tajahuerce E, et al. Optical encryption based on computational ghost imaging[J]. Opt Lett, 2010, 35(14):2391-2393.
    [5] Tian N, Guo Q, Wang A, et al. Fluorescence ghost imaging with pseudothermallight[J]. Optics Letters, 2011, 36(16):3302-3304.
    [6] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixeldetectors[J]. Science, 2013, 340(6134):844-847.
    [7] Pittman T, Shih Y, Strekalov D, et al. Optical imaging by means of two-photonquantum entanglement[J]. Phys Rev A, 1995, 52(5):R3429.
    [8] Strekalov D, Sergienko A, Klyshko D, et al. Observation of two-photon ghost interference and diffraction[J]. Phys Rev Lett, 1995, 74(18):3600.
    [9] Bennink R S, Bentley S J, Boyd R W. Two-photon coincidence imaging witha classical source[J]. Phys Rev Lett, 2002, 89(11):113601.
    [10] Valencia A, Scarcelli G, D'Angelo M, et al. Two-photon imaging with thermallight[J]. Phys Rev Lett, 2005, 94(6):063601.
    [11] GattiA, Brambilla E, Bache M, et al. Ghost imaging with thermal light:comparing entanglement and classicalcorrelation[J]. Phys Rev Lett, 2004, 93(9):093602.
    [12] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with truethermal light[J]. Opt Lett, 2005, 30(18):2354-2356.
    [13] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghostdiffraction experiments with thermal light[J]. Physical Review Letters, 2005, 94(18):183602.
    [14] Shapiro J H. Computational ghost imaging[J]. Phys Rev A, 2008, 78(6):061802.
    [15] Takhar D, Laska J N, Wakin M B, et al. A new compressive imaging cameraarchitecture using optical-domain compression[C]//Computational Imaging IV, 2006, 6065:606509.
    [16] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5):053840.
    [17] Gong W, Han S. A method to improve the visibility of ghost images obtained by thermal light[J]. Physics Letters A, 2010, 374(8):1005-1008.
    [18] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104(25):253603.
    [19] Sun B, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20(15):16892-16901.
    [20] Deng C, Suo J, Wang Y, et al. Single-shot thermal ghost imaging usingwavelength-division multiplexing[J]. Appl Phys Lett, 2018, 112(5):051107.
    [21] Guo K, Jiang S, Zheng G. Multilayer fluorescence imaging on a single-pixeldetector[J]. Biomed Opt Express, 2016, 7(7):2425-2431.
    [22] Wang W, Hu X, Liu J, et al. Gerchberg-Saxton-like ghost imaging[J]. Optics Express, 2015, 23(22):28416-28422.
    [23] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Appl Phys Lett, 2009, 95(13):131110.
    [24] Amann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 2013, 3:1545.
    [25] Cands E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30.
    [26] Adelson E H, Bergen J R. The plenoptic function and the elements of early vision[J]. Computational Models of Visual Processing, 1991:3-20.
    [27] Clemente P, Durn V, Tajahuerce E, et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 2013, 38(14):2524-2527.
    [28] Kandjani S A, Kheradmand R, Dadashzadeh N. Ghost imaging with pseudo-thermal light[C]//201113th International Conference on Transparent Optical Networks. IEEE, 2011:1-4.
    [29] Durn V, Clemente P, Fernndez-Alonso M, et al. Single-pixel polarimetric imaging[J]. Optics Letters, 2012, 37(5):824-826.
    [30] Soldevila F, Irles E, Durn V, et al. Single-pixel polarimetric imaging spectrometer by compressive sensing[J]. Applied Physics B, 2013, 113(4):551-558.
    [31] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 2013, 21(10):12507-12518.
    [32] Soldevila F, Salvador-Balaguer E, Clemente P, et al. High-resolution adaptive imaging with a single photodiode[J]. Scientific Reports, 2015, 5:14300.
    [33] Yu W K, Liu X F, Yao X R, et al. Complementary compressive imaging for the telescopic system[J]. Scientific Reports, 2014, 4:5834.
    [34] Ryczkowski P, Barbier M, Friberg A T, et al. Ghost imaging in the time domain[J]. Nature Photonics, 2016, 10(3):167.
    [35] Ikeuchi K. Determining surface orientations of specular surfaces by using the photometric stereo method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981(6):661-669.
    [36] Woodham R J. Photometric stereo:A reflectance map technique for determining surface orientation from image intensity[C]//Image Understanding Systems and Industrial Applications I, 1979, 155:136-144.
    [37] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 2013, 340(6134):844-847.
    [38] Abramson N. Light-in-flight recording by holography[J]. Optics Letters, 1978, 3(4):121-123.
    [39] Heide F, Hullin M B, Gregson J, et al. Low-budget transient imaging using photonic mixer devices[J]. ACM Transactions on Graphics (ToG), 2013, 32(4):45.
    [40] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7:12010.
    [41] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 2013, 21(10):12507-12518.
    [42] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12):121105.
    [43] Greenberg J, Krishnamurthy K, Brady D. Compressive single-pixel snapshot x-ray diffraction imaging[J]. Optics Letters, 2014, 39(1):111-114.
    [44] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 2014, 1(5):285-289.
    [45] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 2015(5):10669.
    [46] Tanha M, Kheradmand R, Ahmadi-Kandjani S. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 2012, 101(10):101108.
    [47] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight[J]. Optics Letters, 2014, 39(8):2314-2317.
    [48] Duan D, Du S, Xia Y. Multiwavelength ghost imaging[J]. Physical Review A, 2013, 88(5):053842.
    [49] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 2016(6):24752.
    [50] Wang Y, Suo J, Fan J, et al. Hyperspectral computational ghost imaging via temporal multiplexing[J]. IEEE Photonics Technology Letters, 2016, 28(3):288-291.
    [51] Liu Z, Tan S, Wu J, et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 2016(6):25718.
    [52] Goda K, Tsia K, Jalali B. Serial time-encoded amplified imaging for real-timeobservation of fast dynamic phenomena[J]. Nature, 2009, 458(7242):1145.
    [53] Morris P A, Aspden R S, Bell J E C, et al. Imaging with a small number of photons[J]. Nature Communications, 2015, 6:5913.
    [54] Tajahuerce E, Durn V, Clemente P, et al. Image transmission through dynamic scattering media by single-pixel photodetection[J]. Optics Express, 2014, 22(14):16945-16955.
    [55] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Applied Physics Letters, 2011, 98(11):111115.
    [56] Zerom P, Shi Z, O'Sullivan M N, et al. Thermal ghost imaging with averaged speckle patterns[J]. Physical Review A, 2012, 86(6):063817.
    [57] Dixon P B, Howland G A, Chan K W C, et al. Quantum ghost imaging through turbulence[J]. Physical Review A, 2011, 83(5):051803.
    [58] Magana-Loaiza O S, Howland G A, Malik M, et al. Compressive object tracking using entangled photons[J]. Applied Physics Letters, 2013, 102(23):231104.
    [59] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 2015(6):6225.
    [60] Henriques R, Griffiths C, Hesper Rego E, et al. PALM and STORM:Unlocking live-cell super-resolution[J]. Biopolymers, 2011, 95(5):322-331.
    [61] Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086):935.
    [62] Kner P, Chhun B B, Griffis E R, et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5):339.
    [63] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9):739.
    [64] Ghanbari-Ghalehjoughi H, Ahmadi-Kandjani S, Eslami M. High quality computational ghost imaging using multi-fluorescent screen[J]. JOSA A, 2015, 32(2):323-328.
    [65] Pian Q, Yao R, Zhao L, et al. Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection[J]. Optics Letters, 2015, 40(3):431-434.
    [66] Deng C, Suo J, Wang Y, et al. Single-shot thermal ghost imaging usingwavelength-division multiplexing[J]. Applied Physics Letters, 2018, 112(5):051107.
    [67] Deng C, Hu X, Li X, et al. High fidelity single-pixel imaging[J]. IEEE Photonics Journal, 2019, 11(2):1.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(817) PDF downloads(308) Cited by()

Related
Proportional views

Coding and decoding of optical information in single-pixel imaging

doi: 10.3788/IRLA201948.0603004
  • 1. Department of Automation,Tsinghua University,Beijing 100084,China;
  • 2. High-tech Institute of Xi'an,Xi'an 710025,China

Abstract: Single-pixel imaging aims to record the target scene information via a single element detector. For its high sensitivity and wide range of spectrum response, single-pixel imaging is attracting a lot of attentions. Based on the coded acquisition and decoded reconstruction of high dimensional optical signal, single-pixel imaging can meet the demanding requirements in some challenging cases. The research background of single-pixel imaging was firstly introduced, and its imaging principle and reconstruction algorithms were briefly described. Then, from the perspective of coding and decoding of optical information, the current researches and advanced technologies were systematically reviewed. Besides, the existing problems in single-pixel imaging, and its future extensions and potential applications were discussed.

Reference (67)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return