Volume 48 Issue 6
Jul.  2019
Turn off MathJax
Article Contents

Zheng Shanshan, Yang Wanqin, Situ Guohai. Application of computational optical imaging in scattering[J]. Infrared and Laser Engineering, 2019, 48(6): 603005-0603005(15). doi: 10.3788/IRLA201948.0603005
Citation: Zheng Shanshan, Yang Wanqin, Situ Guohai. Application of computational optical imaging in scattering[J]. Infrared and Laser Engineering, 2019, 48(6): 603005-0603005(15). doi: 10.3788/IRLA201948.0603005

Application of computational optical imaging in scattering

doi: 10.3788/IRLA201948.0603005
  • Received Date: 2019-01-11
  • Rev Recd Date: 2019-02-21
  • Publish Date: 2019-06-25
  • Light scattering is a common phenomenon in nature. How to realize high resolution imaging through turbid media is an important problem to be solved urgently in the field of optical imaging. In early studies, multiple light scattering has been regarded as a barrier in imaging through haze, cloud, biological tissue and other complex media. However, recent studies have shown that scattering is not the basic limitation of imaging:photons still contain a lot of information after multiple scattering. In order to provide insight into how new computational optical techniques can address the issues of multiple light scattering, the recent progress of scattering imaging method based on wavefront shaping, speckle correlation and deep learning was summarized. The latest research shows that, wavefront shaping technology can achieve fast optical focusing inside dynamic scattering medium with high resolution; speckle correlation method can realize non-invasive imaging by single-shot speckle pattern; deep learning is able to recover the object hidden behind the white polystyrene plate with optical thickness of 13.4.
  • [1] Wang L, Ho P P, Liu C, et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr Gate[J]. Science, 1991, 253(5021):769-771.
    [2] Anderson G E, Liu F, Alfano R R. Microscope imaging through highly scattering media[J]. Optics Letters, 1994, 19(13):981-983.
    [3] Kang S, Jeong S, Choi W, et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves[J]. Nature Photonics, 2015, 9(4):253-258.
    [4] Guan J, Cheng Y, Chang G. Time-domain polarization difference imaging of objects in turbid water[J]. Optics Communication, 2017, 391:82-87.
    [5] Berrocal E, Kristensson E, Richter M, et al. Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays[J]. Optics Express, 2008, 16(22):17870-17881.
    [6] Sudarsanam S, Mathew J, Panigrahi S, et al. Real-time imaging through strongly scattering media:seeing through turbid media, instantly[J]. Scientific Reports, 2016, 6:25033.
    [7] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181.
    [8] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951):73-76.
    [9] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12):932-940.
    [10] Webb R H. Confocal optical microscopy[J]. Reports on Progress in Physics, 1996, 59:427-471.
    [11] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy:imaging molecules to embryos at high spatio temporal resolution[J]. Science, 2014, 346(6208):1257998.
    [12] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16):2309-2311.
    [13] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2:110-115.
    [14] Farrell T J, Patterson M S, Wilson B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties invivo[J]. Medical Physics, 1992, 19:879-888.
    [15] Wang L, Jacques S L, Zheng L. MCML-Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods Programs in Biomedicine, 1995, 47:131-146.
    [16] Popoff S, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics:an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10):100601.
    [17] Beenakker C W J. Random-matrix theory of quantum transport[J]. Reviews of Modern Physics, 1997, 69:731.
    [18] Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5):283-292.
    [19] Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront shaping methods for focusing light into biological tissue[J]. Nature Photonics, 2015, 9(9):563-571.
    [20] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 2015, 23(9):12189-12206.
    [21] Yu H, Park J, Lee K, et al. Recent advances in wavefront shaping techniques for biomedical applications[J]. Current Applied Physics, 2015, 15(5):632-641.
    [22] Rotter S, Gigan S. Light fields in complex media:Mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 2017, 89(1):015005.
    [23] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 2012, 20(2):1733-1740.
    [24] Cui M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media[J]. Optics Express, 2011,19(4):2989-2995.
    [25] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 2010, 18(4):3444-3455.
    [26] Hsieh C L, Pu Y, Grange R, et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express, 2010, 18(12):12283-12290.
    [27] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 2011, 5(3):154-157.
    [28] Wang Y M, Judkewitz B, Dimarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 2012, 3:928.
    [29] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 2012, 6(10):657-661.
    [30] Cizmr T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging[J]. Nature Communications, 2012, 3:1027.
    [31] Papadopoulos I N, Farahi S, Moser C, et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation[J]. Optics Express, 2012, 20(10):10583-10590.
    [32] Papadopoulos I N, Farahi S, Moser C, et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber[J]. Biomedical Optics Express, 2013, 4(2):260.
    [33] Ci?mr T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation[J]. Nature Photonics, 2010, 4(6):388-394.
    [34] Van Putten E G, Akbulut D, Bertolotti J, et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 2011, 106(19):193905.
    [35] Park J H, Park C, Yu H S, et al. Subwavelength light focusing using random nanoparticles[J]. Nature Photonics, 2013, 7(6):454-458.
    [36] Park C, Park J H, Rodriguez C, et al. Full-field subwavelength imaging using a scattering superlens[J]. Physical Review Letters, 2014, 113(11):113901.
    [37] Van Putten E G, Lagendijk A, Mosk A P. Nonimaging speckle interferometry for high-speed nanometer-scale position detection[J]. Optics Letters, 2012, 37(6):1070-1072.
    [38] Horstmeyer R, Judkewitz B, Vellekoop I M, et al. Physical key-protected one-time pad[J]. Scientific Reports, 2013, 3:3543.
    [39] Goorden S A, Horstmann M, Mosk A P, et al. Quantum-secure authentication of a physical unclonable key[J]. Optica, 2014, 1(6):421-424.
    [40] Akbulut D, Huisman T J, Van Putten E G, et al. Focusing light through random photonic media by binary amplitude modulation[J]. Optics Express, 2011, 19(5):4017-4029.
    [41] Vellekoop I M, Mosk A P. Universal optimal transmission of light through disordered materials[J]. Physical Review Letters, 2008, 101(12):120601.
    [42] Vellekoop I M, Putten E G V, Lagendijk A, et al. Demixing light paths inside disordered metamaterials[J]. Optics Express, 2008, 16(1):67-80.
    [43] Vellekoop I M, Aegerter C M. Scattered light fluorescence microscopy:imaging through turbid layers[J]. Optics Letters, 2010, 35(8):1245-1247.
    [44] Kong F, Silverman R H, Liu L, et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 2011, 36(11):2053-2055.
    [45] Caravaca-Aguirre A M, Conkey D B, Dove J D, et al. High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement[J]. Optics Express, 2013, 21(22):26671-26676.
    [46] Lai P, Wang L, Tay J W, et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 2015, 9(2):126-132.
    [47] Bossy E, Gigan S. Photoacoustics with coherent light[J]. Photoacoustics, 2016, 4(1):22-35.
    [48] Yu Zhipeng, Li Huanhao, Lai Puxiang. Wavefront shaping and its application to enhance photoacoustic imaging[J]. Applied Science, 2017, 7(12):1320.
    [49] Tay J W, Lai P, Suzuki Y, et al. Ultrasonically encoded wavefront shaping for focusing into random media[J]. Scientific Reports, 2014, 4:3918.
    [50] Katz O, Small E, Bromberg Y, et al. Focusing and compression of ultrashort pulses through scattering media[J]. Nature Photonics, 2011, 5(6):372-377.
    [51] Katz O, Small E, Guan Y, et al. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers[J]. Optica, 2014, 1(3):170-174.
    [52] Fiolka R, Si K, Cui M. Complex wavefront corrections for deep tissue focusing using low coherence backscattered light[J]. Optics Express, 2012, 20(15):16532.
    [53] Jang J, Lim J, Yu H, et al. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography[J]. Optics Express, 2013, 21(3):2890-2902.
    [54] Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material[J]. Nature Communications, 2009, 1(6):81.
    [55] Cui M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 2011, 36(6):870.
    [56] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics:an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10):100601.
    [57] Yu H, Hillman T R, Choi W, et al. Measuring large optical transmission matrices of disordered media[J]. Physical Review Letters, 2013, 111(15):153902.
    [58] Yoon J, Lee K R, Park J, et al. Measuring optical transmission matrices by wavefront shaping[J]. Optics Express, 2015, 23(8):10158.
    [59] Lee K R, Park Y K. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 2016, 7:13359.
    [60] Yoonseok B, Kyeoreh L, Yongkeun P. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix[J]. Physical Review Applied, 2018, 10(2):024053.
    [61] Chaigne T, Katz O, Boccara A C, et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 2013, 8(1):58-64.
    [62] Jeong S, Lee Y R, Kang S, et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering[J]. Nature Photonics, 2018, 12:277-283.
    [63] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. Journal of the Optical Society of America, 1966, 56(4):523.
    [64] Shen Y, Liu Y, Ma C, et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 2016, 21(8):085001.
    [65] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 2012, 101(8):81108.
    [66] Hsieh C L, Pu Y, Grange R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optics Express, 2010, 18:20723-20731.
    [67] Ma C, Xu X, Wang L V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000optical power gain[J]. Scientific Reports, 2015, 5:8896.
    [68] Zhou E H, Ruan H, Yang C, et al. Focusing on moving targets through scattering samples[J]. Optica, 2014, 1(4):227-232.
    [69] Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nature Photonics, 2014, 8(12):931-936.
    [70] Ruan H, Tom H, Yan L, et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 2017, 4(11):1337-1343.
    [71] Ruan H, Brake J, Robinson J E, et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 2017, 3(12):5520.
    [72] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 2008, 281(11):3071-3080.
    [73] Yu H S, Lee K R, Park Y K. Ultrahigh enhancement of light focusing through disordered media controlled by megapixel modes[J]. Optics Express, 2017, 25(7):8036-8047.
    [74] Yan L, Cheng M, Yuecheng S, et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 2017, 4(2):280.
    [75] Tao X, Bodington D, Reinig M, et al. High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing[J]. Optics Express, 2015, 23(11):14168.
    [76] Wang D, Zhou E H, Brake J, et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2015, 2(8):728.
    [77] Park J H, Yu Z, Lee Kyeo Re, et al, Perspective:Wavefront shaping techniques for controlling multiple light scattering in biological tissues:Toward in vivo applications[J]. APL Photonics, 2018, 3:100901.
    [78] Judkewitz B, Wang Y M, Horstmeyer R, et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)[J]. Nature Photonics, 2013, 7(4):300-305.
    [79] Yu Z, Huangfu J, Zhao F, et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 2018, 8(1):2927.
    [80] Jang M, Ruan H, Zhou H, et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Optics Express, 2014, 22(12):14054.
    [81] Rigden J D, Gordon E I. The granularity of scattered optical maser light[J]. SPIE Milestone Series Ms, 1997, 133:213.
    [82] Oliver B M. Sparking spots and random diffraction[J]. Proceedings of the IEEE, 1963, 51(1):220-221.
    [83] Goodman J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11):1145-1149.
    [84] Lim J S, Nawab H. Techniques for speckle noise removal[J]. Optical Engineering, 1981, 20(3):472-480.
    [85] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica, 2016, 3(1):71-74.
    [86] Bertolotti J. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491:232-234.
    [87] Tang W, Yang J, Yi W, et al. Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media[J]. Applied Optics, 2019, 58(4):1033-1039.
    [88] Vinu R V, Gaur C, Khare K, et al. Sparsity assisted approach for imaging from laser speckle[C]//Quantitative Phase Imaging Ⅲ. International Society for Optics and Photonics, 2017, 10074:1007409.
    [89] Dror I, Sandrov A, Kopeika N S. Experimental investigation of the influence of the relative position of the scattering layer on image quality:the shower curtain effect[J]. Applied Optics, 1998, 37(27):6495-6499.
    [90] Li G, Yang W, Li D, et al. Cyphertext-only attack on the double random-phase encryption:Experimental demonstration[J]. Optics Express, 2017, 25(8):8690-8697.
    [91] Feng S, Kane C, Lee P A. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 1988, 61(7):834-837.
    [92] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20):2328-2331.
    [93] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8:784-790.
    [94] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3:27-29.
    [95] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21:2758-2769.
    [96] Wu T, Katz O, Shao X. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 2016, 41:5003-5006.
    [97] Singh A K, Pedrini G, Takedas M, et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution[J]. Scientific Reports, 2017, 7:10687.
    [98] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media[J]. Scientific Reports, 2016, 6:33558.
    [99] Yang W, Li G, Situ G. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 2018, 8:9614.
    [100] Mukherjee S, Vijayakumar A, Kumar M, et al. 3D imaging through scatterers with interferenceless optical system[J]. Scientific Reports, 2018, 8:1134.
    [101] Shi Y, Liu Y, Wang J, et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax[J]. Applied Physics Letters, 2017, 110:231101.
    [102] Tang D, Sahoo S K, Tran V, et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing[J]. Applied Optics, 2018, 57(26):7533-7538.
    [103] Li G, Yang W, Wang H, et al. Image transmission through scattering media using ptychographic iterative engine[J]. Applied Sciences, 2019, 9(5):849.
    [104] Ando T, Horisaki R, Tanida J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26):33902-33910.
    [105] Horisaki R, Takagi R, Tanida J. Learning-based imaging through scattering media[J]. Optics Express, 2016, 24(13):13738-13743.
    [106] HorniK K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366.
    [107] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computerassisted Intervention, 2015:234-241.
    [108] Lyu M, Wang H, Li G, et al. Learning-base lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3):036002.
    [109] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7):803-813.
    [110] Li Y, Xue Y, Tian L. Deep speckle correlation:a deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10):1181-1190.
    [111] Caramazza P, Boccolini A, Buschek D, et al. Neural network identifcation of people hidden from view with a single-pixel, single-photon detector[J]. Scientific Reports, 2018, 8:11945.
    [112] Turpin A, Vishniakou I, Seelig J D. Light scattering control in transmission and reflection with neural networks[J]. Optics Express, 2018, 26(23):30911-30929.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1268) PDF downloads(394) Cited by()

Related
Proportional views

Application of computational optical imaging in scattering

doi: 10.3788/IRLA201948.0603005
  • 1. Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;
  • 2. Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

Abstract: Light scattering is a common phenomenon in nature. How to realize high resolution imaging through turbid media is an important problem to be solved urgently in the field of optical imaging. In early studies, multiple light scattering has been regarded as a barrier in imaging through haze, cloud, biological tissue and other complex media. However, recent studies have shown that scattering is not the basic limitation of imaging:photons still contain a lot of information after multiple scattering. In order to provide insight into how new computational optical techniques can address the issues of multiple light scattering, the recent progress of scattering imaging method based on wavefront shaping, speckle correlation and deep learning was summarized. The latest research shows that, wavefront shaping technology can achieve fast optical focusing inside dynamic scattering medium with high resolution; speckle correlation method can realize non-invasive imaging by single-shot speckle pattern; deep learning is able to recover the object hidden behind the white polystyrene plate with optical thickness of 13.4.

Reference (112)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return