Volume 48 Issue 6
Jul.  2019
Turn off MathJax
Article Contents

Zhang Wenhui, Cao Liangcai, Jin Guofan. Review on high resolution and large field of view digital holography[J]. Infrared and Laser Engineering, 2019, 48(6): 603008-0603008(17). doi: 10.3788/IRLA201948.0603008
Citation: Zhang Wenhui, Cao Liangcai, Jin Guofan. Review on high resolution and large field of view digital holography[J]. Infrared and Laser Engineering, 2019, 48(6): 603008-0603008(17). doi: 10.3788/IRLA201948.0603008

Review on high resolution and large field of view digital holography

doi: 10.3788/IRLA201948.0603008
  • Received Date: 2019-03-13
  • Rev Recd Date: 2019-06-21
  • Publish Date: 2019-06-25
  • As an interference imaging method, digital holography (DH) can accurately record the phase information of objects, and has the advantages of fast, non-destructive and three-dimensional imaging. It is widely used in the field of biological imaging and materials science. Like other optical imaging methods, DH also faces the problem that the resolution and the field of view(FOV) are mutually constrained, resulting in limited spatial bandwidth product(SBP). To solve this problem, researchers proposed methods such as computational illumination, computational modulation, and computational probing to extend SBP by sacrificing other degrees of freedom(such as time and polarization) of the imaging system. This paper firstly reviews the theoretical analysis of information capacity of an optical system. On this basis, we systematically summarize the high-resolution and large-FOV digital holographic imaging technology in recent years, introduce the principle and implementation of oblique illumination, structured illumination, random modulation illumination, multi-position synthetic aperture and pixel super-resolution method for resolution enhancement, and angle multiplexing method for FOV extension, and make a comparative study. The potential ways to improve resolution and expand FOV are also prospected.
  • [1] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 2018, 12(10):578-589.
    [2] Cotte Y, Toy F, Jourdain P, et al. Marker-free phase nanoscopy[J]. Nature Photonics, 2013, 7(113):113-117.
    [3] Nguyen T H, Kandel M E, Rubessa M, et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens[J]. Nature Communications, 2017, 8(1):210.
    [4] Bianco V, Paturzo M, Marchesano V, et al. Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector[J]. Lab on a Chip, 2015, 15(9):2117-2124.
    [5] Yao Baoli, Lei Ming, Xue Bin, et al. Progress and applications of high-resolution and super-resolution optical imaging in space and biology[J]. Acta Photonica Sinica, 2011, 40(11):1607-1618. (in Chinese)
    [6] Maire G, Drsek F, Girard J, et al. Experimental demonstration of quantitative imaging beyond abbe's limit with optical diffraction tomography[J]. Physical Review Letters, 2009, 102(21):213905.
    [7] Alexandrov S A, Hillman T R, Gutzler T, et al. Synthetic aperture Fourier holographic optical microscopy[J]. Physical Review Letters, 2006, 97(16):168102.
    [8] Arhab S, Soriano G, Ruan Y, et al. Nanometric resolution with far-field optical profilometry[J]. Physical Review Letters, 2013, 111(5):053902.
    [9] Calabuig A, Mic V, Garcia J, et al. Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing[J]. Opt Lett, 2011, 36(6):885-887.
    [10] Yuan C, Situ G, Pedrini G, et al. Resolution improvement in digital holography by angular and polarization multiplexing[J]. Appl Opt, 2011, 50(7):B6-B11.
    [11] Mico V, Zalevsky Z, Garca J. Synthetic aperture microscopy using off-axis illumination and polarization coding[J]. Optics Communications, 2007, 276(2):209-217.
    [12] Picazo-Bueno J, Zalevsky Z, Garca J, et al. Superresolved spatially multiplexed interferometric microscopy[J]. Opt Lett, 2017, 42(5):927-930.
    [13] Mico V, Zalevsky Z, Garca-Martnez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. J Opt Soc Am A, 2006, 23(12):3162-3170.
    [14] Mico V, Zalevsky Z, Garca-Martnez P, et al. Superresolved imaging in digital holography by superposition of tilted wavefronts[J]. Appl Opt, 2006, 45(5):822-828.
    [15] Thurman S T, Bratcher A. Multiplexed synthetic-aperture digital holography[J]. Appl Opt, 2015, 54(3):559-568.
    [16] Price J R, Bingham P R, Thomas J C E. Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain[J]. Appl Opt, 2007, 46(6):827-833.
    [17] Schwarz C J, Kuznetsova Y, Brueck S R J. Imaging interferometric microscopy[J]. Opt Lett, 2003, 28(16):1424-1426.
    [18] Bhl J, Babovsky H, Kiessling A, et al. Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra[J]. Optics Communications, 2010, 283(19):3631-3638.
    [19] Kim M, Choi Y, Fang-Yen C, et al. High-speed synthetic aperture microscopy for live cell imaging[J]. Opt Lett, 2011, 36(2):148-150.
    [20] Mico V, Zalevsky Z, Garcia-Martinez P, et al. Single-step superresolution by interferometric imaging[J]. Opt Express, 2004, 12(12):2589-2596.
    [21] Zhao J, Yan X, Sun W, et al. Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states[J]. Opt Lett, 2010, 35(20):3519-3521.
    [22] Yuan C, Zhai H, Liu H. Angular multiplexing in pulsed digital holography for aperture synthesis[J]. Opt Lett, 2008, 33(20):2356-2358.
    [23] Mic V, Zalevsky Z. Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging[J]. Journal of Biomedical Optics, 2010, 15(4):046027.
    [24] Granero L, Zalevsky Z, Mic V. Resolution and field of view improvement in digital holography using a VCSEL source array[C]//10th Euro-American Workshop on Information Optics, 2011:1-3.
    [25] Granero L, Mic V, Zalevsky Z, et al. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information[J]. Appl Opt, 2010, 49(5):845-857.
    [26] Lai X J, Tu H Y, Wu C H, et al. Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy[J]. Appl Opt, 2015, 54(1):A51-A58.
    [27] Zheng J, Gao P, Yao B, et al. Digital holographic microscopy with phase-shift-free structured illumination[J]. Photon Res, 2014, 2(3):87-91.
    [28] Snchez-Ortiga E, Martnez-Corral M, Saavedra G, et al. Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination[J]. Opt Lett, 2014, 39(7):2086-2089.
    [29] Lai X J, Tu H Y, Lin Y C, et al. Coded aperture structured illumination digital holographic microscopy for superresolution imaging[J]. Opt Lett, 2018, 43(5):1143-1146.
    [30] Kashter Y, Vijayakumar A, Miyamoto Y, et al. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination[J]. Opt Lett, 2016, 41(7):1558-1561.
    [31] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Opt Lett, 2013, 38(8):1328-1330.
    [32] Neumann A, Kuznetsova Y, Brueck S R J. Structured illumination for the extension of imaging interferometric microscopy[J]. Opt Express, 2008, 16(10):6785-6793.
    [33] Chowdhury S, Izatt J. Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging[J]. Opt Lett, 2014, 39(4):1015-1018.
    [34] Lee K, Kim K, Kim G, et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography[J]. Opt Lett, 2017, 42(5):999-1002.
    [35] Chowdhury S, Eldridge W J, Wax A, et al. Refractive index tomography with structured illumination[J]. Optica, 2017, 4(5):537-545.
    [36] Wilde J P, Goodman J W, Eldar Y C, et al. Coherent superresolution imaging via grating-based illumination[J]. Appl Opt, 2017, 56(1):A79-A88.
    [37] Park Y, Choi W, Yaqoob Z, et al. Speckle-field digital holographic microscopy[J]. Opt Express, 2009, 17(15):12285-12292.
    [38] Zheng J, Pedrini G, Gao P, et al. Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination[J]. Journal of Optics, 2015, 17(8):085301.
    [39] Liu C, Liu Z, Bo F, et al. Super-resolution digital holographic imaging method[J]. Applied Physics Letters, 2002, 81(17):3143-3145.
    [40] Paturzo M, Merola F, Grilli S, et al. Super-resolution in digital holography by a two-dimensional dynamic phase grating[J]. Opt Express, 2008, 16(21):17107-17118.
    [41] Lin Q, Wang D, Wang Y, et al. Super-resolution imaging in digital holography by using dynamic grating with a spatial light modulator[J]. Optics and Lasers in Engineering, 2015, 66:279-284.
    [42] Zhang W, Cao L, Jin G, et al. Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation[J]. Appl Opt, 2018, 57(1):A164-A171.
    [43] Lin Q. Resolution improvement mechanism and experiment study on digital holographic microscopic imaging[D]:Beijing:Beijing University of Techology, 2017. (in Chinese)
    [44] Zalevsky Z, Gur E, Garcia J, et al. Superresolved and field-of-view extended digital holography with particle encoding[J]. Opt Lett, 2012, 37(13):2766-2768.
    [45] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3:1717.
    [46] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Opt Express, 2010, 18(11):11181-11191.
    [47] Bishara W, Sikora U, Mudanyali O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array[J]. Lab on a Chip, 2011, 11(7):1276-1279.
    [48] Claus D, Fritzsche M, Iliescu D, et al. High-resolution digital holography utilized by the subpixel sampling method[J]. Appl Opt, 2011, 50(24):4711-4719.
    [49] Wu K, Wu X, Zhao L. Experimental research on super-resolution digital holography[J]. Optical Technique, 2018, 44(1):101-105. (in Chinese)
    [50] Li Y, Lilley F, Burton D, et al. Evaluation and benchmarking of a pixel-shifting camera for superresolution lensless digital holography[J]. Appl Opt, 2010, 49(9):1643-1650.
    [51] Mic V, Granero L, Zalevsky Z, et al. Superresolved phase-shifting Gabor holography by CCD shift[J]. Journal of Optics A:Pure and Applied Optics, 2009, 11(12):125408.
    [52] Zhang Y, Lu X, Luo Y, et al. Synthetic aperture holography by movement of object[C]//SPIE, 2005, 5636:8.
    [53] Jiang H, Zhao J, Di J, et al. Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography[J]. Opt Express, 2009, 17(21):18836-18842.
    [54] Massig J H. Digital off-axis holography with a synthetic aperture[J]. Opt Lett, 2002, 27(24):2179-2181.
    [55] Gymesi F, Fzessy Z, Borbly V, et al. Half-magnitude extensions of resolution and field of view in digital holography by scanning and magnification[J]. Appl Opt, 2009, 48(31):6026-6034.
    [56] Huang H, Rong L, Wang D, et al. Synthetic aperture in terahertz in-line digital holography for resolution enhancement[J]. Appl Opt, 2016, 55(3):A43-A48.
    [57] Lohmann A W, Dorsch R G, Mendlovic D, et al. Space-bandwidth product of optical signals and systems[J]. J Opt Soc Am A, 1996, 13(3):470-473.
    [58] Fellgett Peter B, Linfoot E H, Redman Roderick O. On the assessment of optical images[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1955, 247(931):369-407.
    [59] Lukosz W. Optical systems with resolving powers exceeding the classical limit[J]. J Opt Soc Am, 1966, 56(11):1463-1471.
    [60] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. New York:Roberts and Company Publishers, 2005.
    [61] Cox I J, Sheppard C J R. Information capacity and resolution in an optical system[J]. J Opt Soc Am A, 1986, 3(8):1152-1158.
    [62] Bastiaans M J. Wigner distribution function and its application to first-order optics[J]. J Opt Soc Am, 1979, 69(12):1710-1716.
    [63] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Opt Lett, 1997, 22(16):1268-1270.
    [64] Fienup J R. Phase retrieval algorithms:a comparison[J]. Appl Opt, 1982, 21(15):2758-2769.
    [65] Zhang W, Cao L, Brady D J, et al. Twin-image-free holography:a compressive sensing approach[J]. Physical Review Letters, 2018, 121(9):093902.
    [66] Zhang H, Cao L, Zhang H, et al. Efficient block-wise algorithm for compressive holography[J]. Opt Express, 2017, 25(21):24991-25003.
    [67] Girshovitz P, Shaked N T. Doubling the field of view in off-axis low-coherence interferometric imaging[J]. Light:Science Amp; Applications, 2014, 3:e151.
    [68] Rubin M, Dardikman G, Mirsky S K, et al. Six-pack off-axis holography[J]. Opt Lett, 2017, 42(22):4611-4614.
    [69] Mic V, Zheng J, Garcia J, et al. Resolution enhancement in quantitative phase microscopy[J]. Adv Opt Photon, 2019, 11(1):135-214.
    [70] Li H, Zhong L, Ma Z, et al. Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography[J]. Optics Communications, 2011, 284(9):2268-2272.
    [71] Tippie A E, Kumar A, Fienup J R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction[J]. Opt Express, 2011, 19(13):12027-12038.
    [72] Lim S, Choi K, Hahn J, et al. Image-based registration for synthetic aperture holography[J]. Opt Express, 2011, 19(12):11716-11731.
    [73] Song S, Wan Y, Han Y, et al. Structure-illuminated self-interference digital holography for optical sectioning[J]. Chinese Journal of Lasers, 2015, 46(5):1-12. (in Chinese)
    [74] Gustafsson M G L. Nonlinear structured-illumination microscopy:Wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13081-13086.
    [75] Wicker K, Heintzmann R. Resolving a misconception about structured illumination[J]. Nature Photonics, 2014, 8(5):342.
    [76] Jiang Z, Veetil S P, Cheng J, et al. High-resolution digital holography with the aid of coherent diffraction imaging[J]. Opt Express, 2015, 23(16):20916-20925.
    [77] Zhao Y, Cao X, Chen B, et al. Digital holography subpixel displacement aperture synthesis[J]. Infrared and Laser Engineering, 2018, 47(6):0626002. (in Chinese)
    [78] Zheng G, Lee S A, Yang S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging[J]. Lab on a Chip, 2010, 10(22):3125-3129.
    [79] Wu Y, Zhang Y, Luo W, et al. Demosaiced pixel super-resolution for multiplexed holographic color imaging[J]. Scientific Reports, 2016, 6:28601.
    [80] Luo W, Zhang Y, Feizi A, et al. Pixel super-resolution using wavelength scanning[J]. Light:Science Applications, 2016, 5:e16060.
    [81] Paturzo M, Ferraro P. Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography[J]. Opt Lett, 2009, 34(23):3650-3652.
    [82] Lu Y, Liu Y, Li P, et al. Multiplexed off-axis holography using a transmission diffraction grating[J]. Opt Lett, 2016, 41(3):512-515.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1159) PDF downloads(349) Cited by()

Related
Proportional views

Review on high resolution and large field of view digital holography

doi: 10.3788/IRLA201948.0603008
  • 1. State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instrument,Tsinghua University,Beijing 100084,China

Abstract: As an interference imaging method, digital holography (DH) can accurately record the phase information of objects, and has the advantages of fast, non-destructive and three-dimensional imaging. It is widely used in the field of biological imaging and materials science. Like other optical imaging methods, DH also faces the problem that the resolution and the field of view(FOV) are mutually constrained, resulting in limited spatial bandwidth product(SBP). To solve this problem, researchers proposed methods such as computational illumination, computational modulation, and computational probing to extend SBP by sacrificing other degrees of freedom(such as time and polarization) of the imaging system. This paper firstly reviews the theoretical analysis of information capacity of an optical system. On this basis, we systematically summarize the high-resolution and large-FOV digital holographic imaging technology in recent years, introduce the principle and implementation of oblique illumination, structured illumination, random modulation illumination, multi-position synthetic aperture and pixel super-resolution method for resolution enhancement, and angle multiplexing method for FOV extension, and make a comparative study. The potential ways to improve resolution and expand FOV are also prospected.

Reference (82)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return