Volume 48 Issue 10
Oct.  2019
Turn off MathJax
Article Contents

Huang Lingling, Wei Qunshuo, Wang Yongtian. Development and applications of wavefront modulation technology based on new functional metasurfaces(Invited)[J]. Infrared and Laser Engineering, 2019, 48(10): 1002001-1002001(16). doi: 10.3788/IRLA201948.1002001
Citation: Huang Lingling, Wei Qunshuo, Wang Yongtian. Development and applications of wavefront modulation technology based on new functional metasurfaces(Invited)[J]. Infrared and Laser Engineering, 2019, 48(10): 1002001-1002001(16). doi: 10.3788/IRLA201948.1002001

Development and applications of wavefront modulation technology based on new functional metasurfaces(Invited)

doi: 10.3788/IRLA201948.1002001
  • Received Date: 2019-08-11
  • Rev Recd Date: 2019-09-21
  • Publish Date: 2019-10-25
  • As a kind of smart surface, metasurfaces are usually composed of sub-wavelength nano-antenna arrays which are specially designed and processed with characteristic sizes close to or less than their working wavelengths. Metasurfaces can arbitrarily modulate the amplitude, phase and polarization of the light field. It has the advantages of ultra-thinness, ultra-small pixels, broadband, low loss, easy processing, flexible design and great functionality. This paper reviews the research progress of metasurfaces in holographic display, wavefront modulation and polarization conversion, active tunable, nonlinear wavefront modulation, and looks forward to the future development trend of metasurfaces. As an ultra-thin and miniaturized wavefront modulation device, metasurfaces have great information capacity and are more suitable for the future development of highly integrated micro optoelectronic systems. Metasurfaces provide potential feasibility and new perspectives for a plethora of applications such as holographic display, beam shaping, vortex beam generation, data storage, encryption and anti-counterfeiting, metalens and dispersion control, color printing, asymmetric transmission, nonlinear optics, the spin-Hall effect of light, optical communication, integrated optoelectronics. They are expected to replace the traditional optoelectronic devices and show broad prospects for future development.
  • [1] Ding F, Pors A, Bozhevolnyi S I. Gradient metasurfaces:a review of fundamentals and applications[J]. Reports On Progress in Physics, 2018, 81(2):26401.
    [2] Hsiao H, Cheng H, Tsai D. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4):1600064.
    [3] Sung J, Lee G, Lee B. Progresses in the practical metasurface for holography and lens[J]. Nanophotonics, 2019, 8(10):1701-1718.
    [4] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics:from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1):139-152.
    [5] Genevet P, Capasso F. Holographic optical metasurfaces:a review of current progress[J]. Reports On Progress in Physics, 2015, 78(2):24401.
    [6] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3):1394-1399.
    [7] Huang K, Liu H, Restuccia S, et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum[J]. Light-Science Applications, 2018, 7(3):17156.
    [8] Chen Y, Yang X, Gao J. Spin-selective second-harmonic vortex beam generation with babinet-inverted plasmonic metasurfaces[J]. Advanced Optical Materials, 2018, 6(19):1800646.
    [9] Pegard N C, Fleischer J W. Optimizing holographic data storage using a fractional Fourier transform[J]. Optics Letters, 2011, 36(13):2551-2553.
    [10] Goh X M, Zheng Y, Tan S J, et al. Three-dimensional plasmonic stereoscopic prints in full colour[J]. Nature Communications, 2014, 5:5361.
    [11] Jin L, Dong Z, Mei S, et al. Noninterleaved metasurface for (2(6)-1) spin-and wavelength-encoded holograms[J]. Nano Letters, 2018, 18(12):8016-8024.
    [12] Liu H, Yang B, Guo Q, et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram[J]. Science Advances, 2017, 3(9):e1701477.
    [13] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3):220.
    [14] Wang S, Wu P C, Su V, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3):227-232.
    [15] Nagasaki Y, Suzuki M, Takahara J. All-dielectric Dual-color pixel with subwavelength resolution[J]. Nano Letters, 2017, 17(12):7500-7506.
    [16] Li Z, Clark A W, Cooper J M. Dual color plasmonic pixels create a polarization controlled nano color palette[J]. Acs Nano, 2016, 10(1):492-498.
    [17] Duan X, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nature Communications, 2017, 8:14606.
    [18] Ji R, Wang S, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J]. Nanoscale, 2016, 8(15):8189-8194.
    [19] Xiao Y, Qian H, Liu Z. Nonlinear metasurface based on giant optical kerr response of gold quantum wells[J]. Acs Photonics, 2018, 5(5):1654-1659.
    [20] Li G, Wu L, Li K F, et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation[J]. Nano Letters, 2017, 17(12):7974-7979.
    [21] Minerbi E, Keren-Zur S, Ellenbogen T. Nonlinear metasurface fresnel zone plates for terahertz generation and manipulation[J]. Nano Letters, 2019, 19(9):6072-6077.
    [22] Wang J, Yang J, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7):488-496.
    [23] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.
    [24] Pfeiffer C, Emani N K, Shaltout A M, et al. Efficient light bending with isotropic metamaterial huygens' surfaces[J]. Nano Letters, 2014, 14(5):2491-2497.
    [25] Wang L, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12):1504-1505.
    [26] Zheng G, Muehlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308-312.
    [27] Sung J, Lee G, Choi C, et al. Single-layer bifacial metasurface:full-space visible light control[J]. Advanced Optical Materials, 2019, 7(8):1801748.
    [28] Deng Z, Deng J, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5):2885-2892.
    [29] Huang L, Chen X, Muehlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4:2808.
    [30] Chen Y, Yang X, Gao J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces[J]. Light-Science Applications, 2018, 7(1):1-10.
    [31] Franklin D, Modak S, Vazquez-Guardado A, et al. Covert infrared image encoding through imprinted plasmonic cavities[J]. Light-Science Applications, 2018, 7(1):93.
    [32] Kamali S M, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces:encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4):41056.
    [33] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics Express, 2013, 21(22):27438-27451.
    [34] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35):12679-12683.
    [35] Huang L, Muhlenbernd H, Li X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41):6444.
    [36] Wei Q, Huang L, Li X, et al. Broadband multiplane holography based on plasmonic metasurface[J]. Advanced Optical Materials, 2017, 5(18):1700434.
    [37] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics:Independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11):113901.
    [38] Zhao R, Sain B, Wei Q, et al. Multichannel vectorial holographic display and encryption[J]. Light-Science Applications, 2018, 7(1):95.
    [39] Wang B, Dong F, Li Q, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8):5235-5240.
    [40] Wan W, Gao J, Yang X. Full-Color Plasmonic metasurface holograms[J]. Acs Nano, 2016, 10(12):10671-10680.
    [41] Li X, Chen L, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11):e1601102.
    [42] Lim K T P, Liu H, Liu Y, et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control[J]. Nature Communications, 2019, 10(1):25.
    [43] Zhang Y, Shi L, Hu D, et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing[J]. Nanoscale Horizons, 2019, 4(3):601-609.
    [44] Hu Y, Luo X, Chen Y, et al. 3D-Integrated metasurfaces for full-colour holography[J]. Light-Science Applications, 2019, 8(1):1-9.
    [45] Ji R, Wang S, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J]. Nanoscale, 2016, 8(15):8189-8194.
    [46] Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces:asymmetric transmission of light[J]. Physical Review Letters, 2014, 113(2):23902.
    [47] Zhao Y, Belkin M A, Alu A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nature Communications, 2012, 3:870.
    [48] Frese D, Wei Q, Wang Y, et al. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces[J]. Nano Letters, 2019, 19(6):3976-3980.
    [49] Cheng J, Jafar-Zanjani S, Mosallaei H. All-dielectric ultrathin conformal metasurfaces:lensing and cloaking applications at 532 nm wavelength[J]. Scientific Reports, 2016, 6:38440.
    [50] Kamali S M, Arbabi A, Arbabi E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 2016, 7:11618.
    [51] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths:Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194.
    [52] Han N, Huang L, Wang Y. Illusion and cloaking using dielectric conformal metasurfaces[J]. Optics Express, 2018, 26(24):31625-31635.
    [53] Mehmood M Q, Mei S, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13):2533.
    [54] Huang L, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces[J]. Acs Photonics, 2017, 4(2):338-346.
    [55] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6):343-348.
    [56] Tan H, Deng J, Zhao R, et al. A Free-Space Orbital angular momentum multiplexing communication system based on a metasurface[J]. Laser Photonics Reviews, 2019, 13(6):1800278.
    [57] Lin Z, Li X, Zhao R, et al. High-efficiency bessel beam array generation by Huygens metasurfaces[J]. Nanophotonics, 2019, 8(6):1079-1085.
    [58] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29):5031-5036.
    [59] Jia S L, Wan X, Fu X J, et al. Low-reflection beam refractions by ultrathin Huygens metasurface[J]. Aip Advances, 2015, 5(6):67102.
    [60] Lee G, Yoon G, Lee S, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9):4237-4245.
    [61] Song X, Huang L, Tang C, et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6(4):1701181.
    [62] Song X, Huang L, Sun L, et al. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface[J]. Applied Physics Letters, 2018, 112(7):73104.
    [63] Zhang T, Huang L, Li X, et al. High-efficiency broadband polarization converter based on Omega-shaped metasurface[J]. Journal of Physics D-Applied Physics, 2017, 50(45):454001.
    [64] Zhao R, Huang L, Tang C, et al. Nanoscale polarization manipulation and encryption based on dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6(19):1800490.
    [65] Malek S C, Ee H, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6):3641-3645.
    [66] Ji R, Hua Y, Chen K, et al. A switchable metalens based on active tri-layer metasurface[J]. Plasmonics, 2019, 14(1):165-171.
    [67] Zhu W, Yang R, Fan Y, et al. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials[J]. Nanoscale, 2018, 10(25):12054-12061.
    [68] Cheng Z, Rios C, Pernice W H P, et al. On-chip photonic synapse[J]. Science Advances, 2017, 3(9):e1700160.
    [69] Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1):60-75.
    [70] Hwang C, Kim G H, Yang J, et al. Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials[J]. Nanoscale, 2018, 10(46):21648-22655.
    [71] Li T, Huang L, Liu J, et al. Tunable wave plate based on active plasmonic metasurfaces[J]. Optics Express, 2017, 25(4):4216-4226.
    [72] Lin Z, Huang L, Zhao R, et al. Dynamic control of mode modulation and spatial multiplexing using hybrid metasurfaces[J]. Optics Express, 2019, 27(13):18740-18750.
    [73] Li J, Kamin S, Zheng G, et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 2018, 4(6):eaar6768.
    [74] Li T, Wei Q, Reineke B, et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels[J]. Optics Express, 2019, 27(15):21153-21162.
    [75] Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7:11930.
    [76] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography[J]. Nature Communications, 2016, 7:12533.
    [77] Lin Z, Huang L, Xu Z T, et al. Four-wave mixing holographic multiplexing based on nonlinear metasurfaces[J]. Advanced Optical Materials, 2019:1900782.
    [78] Reineke B, Sain B, Zhao R, et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography[J]. Nano Letters, 2019, 19(9):6585-6591.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1204) PDF downloads(378) Cited by()

Related
Proportional views

Development and applications of wavefront modulation technology based on new functional metasurfaces(Invited)

doi: 10.3788/IRLA201948.1002001
  • 1. MoE Key Laboratory of Photoelectronic Imaging Technology and System,School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China

Abstract: As a kind of smart surface, metasurfaces are usually composed of sub-wavelength nano-antenna arrays which are specially designed and processed with characteristic sizes close to or less than their working wavelengths. Metasurfaces can arbitrarily modulate the amplitude, phase and polarization of the light field. It has the advantages of ultra-thinness, ultra-small pixels, broadband, low loss, easy processing, flexible design and great functionality. This paper reviews the research progress of metasurfaces in holographic display, wavefront modulation and polarization conversion, active tunable, nonlinear wavefront modulation, and looks forward to the future development trend of metasurfaces. As an ultra-thin and miniaturized wavefront modulation device, metasurfaces have great information capacity and are more suitable for the future development of highly integrated micro optoelectronic systems. Metasurfaces provide potential feasibility and new perspectives for a plethora of applications such as holographic display, beam shaping, vortex beam generation, data storage, encryption and anti-counterfeiting, metalens and dispersion control, color printing, asymmetric transmission, nonlinear optics, the spin-Hall effect of light, optical communication, integrated optoelectronics. They are expected to replace the traditional optoelectronic devices and show broad prospects for future development.

Reference (78)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return