Volume 48 Issue 12
Dec.  2019
Turn off MathJax
Article Contents

Cao Zhensong, Huang Yinbo, Wei Heli, Zhu Wenyue, Rao Ruizhong, Wang Yingjian. Research progress and related problems on the acquisition method of total atmospheric transmittance[J]. Infrared and Laser Engineering, 2019, 48(12): 1203004-1203004(13). doi: 10.3788/IRLA201948.1203004
Citation: Cao Zhensong, Huang Yinbo, Wei Heli, Zhu Wenyue, Rao Ruizhong, Wang Yingjian. Research progress and related problems on the acquisition method of total atmospheric transmittance[J]. Infrared and Laser Engineering, 2019, 48(12): 1203004-1203004(13). doi: 10.3788/IRLA201948.1203004

Research progress and related problems on the acquisition method of total atmospheric transmittance

doi: 10.3788/IRLA201948.1203004
  • Received Date: 2019-10-05
  • Rev Recd Date: 2019-11-01
  • Publish Date: 2019-12-25
  • The total atmospheric transmittance is an important parameter reflecting the optical properties of the atmosphere. In the fields of atmospheric radiation, remote sensing, air quality monitoring and opto-electronic engineering, it is necessary to make a deep study on the atmospheric transmittance. In this paper, the methods of acquiring atmospheric transmittance were discussed in detail, and the latest progress and related problems of different acquisition methods were analyzed. The characteristics of software based simulation and direct measurement were compared and analyzed, and at the last, the future research was also prospected.
  • [1] Gong Shaoqi, Sun Haibo, Wang Shaofeng, et al. Study on atmospheric transmittance of thermal infrared remote sensing(I):derivation of atmospheric transmittance model[J]. Infrared and Laser Engineering, 2015, 44(6):1692-1698. (in Chinese)龚绍琦, 孙海波, 王少峰, 等. 热红外遥感中大气透过率的研究(一):大气透过率模式的构建[J]. 红外与激光工程, 2015, 44(6):1692-1698.
    [2] Tai Hongda, Zhuang Zibo, Jiang Lihui, et al. Multi-point mobile measurement of atmospheric transmittance[J]. Optics and Precision Engineering, 2016, 24(8):1894-1901. (in Chinese)台宏达, 庄子波, 蒋立辉, 等. 大气透过率的多点移动测量[J]. 光学精密工程, 2016, 24(8):1894-1901.
    [3] Zang Shouhong, Bai Yunta, Ouyang Yi. Research on atmospheric transmittance measuring method[J]. Infrared, 2009, 30(3):26-29. (in Chinese)臧寿洪, 白云塔, 欧阳艺. 大气透过率测量方法的研究[J]. 红外, 2009, 30(3):26-29.
    [4] Goody R M, Yung Y L. Atmospheric Radiation:Theoretical Basis[M]. Oxford:Oxford University Press, 1989:125-181.
    [5] Clough S A, Iacono M J. Line-by-line calculations of atmospheric fluxes and cooling rates:Part II:Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons[J]. Journal of Geophysics Research, 1995, 100(8):16519-16535.
    [6] Witschas B. Light Scattering on Molecules in the Atmosphere[M]//Schumann U. Atmospheric Physics. Research Topics in Aerospace, Berlin:Springer, 2012.
    [7] Kokhanovsky A. Aerosol Optics:Light Absorption and Scattering by Particles in the Atmosphere[M]. Berlin:Springer, 2008.
    [8] Zhan Jie, Guo Ruipeng, Huang Honghua, et al. Measurement of total atmospheric transmittance with stellar irradiance[J]. High Power Laser and Particle Beams, 2007, 19(11):1761-1765. (in Chinese)詹杰, 郭瑞鹏, 黄宏华, 等. 利用恒星测量整层大气透过率[J]. 强激光与粒子束, 2007, 19(11):1761-1765.
    [9] Adler-Golden S M, Slusser J R. Comparison of plotting methods for solar radiometer calibration[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(5):935-938.
    [10] Selby J E A, McClatchey R A. Atmospheric transmittance from 0.25 to 28.5m:Computer Code LOWTRAN 3[S]. 1975.
    [11] Haught K M, Cordray D M. Long-path high-resolution atmospheric transmission measurements:comparison with LOWTRAN 3B predictions[J]. Applied Optics, 1978, 17(17):2668-2670.
    [12] Kneizys, F X, Shettle E, Abreu L W, et al. User guide to LOWTRAN 7[Z]. 1988.
    [13] Meng Fanbin, Zheng Li. LOWTRAN 7-based calculation method of IR transmittance in the atmosphere[J]. Electro-Optic Technology Application, 2009, 24(3):29-32.(in Chinese)孟凡斌, 郑丽. 基于LOWTRAN 7的红外大气透过率计算方法[J]. 光电技术应用, 2009, 24(3):29-32.
    [14] Berk A, Conforti P, Kennett R. MODTRAN6:a major upgrade of the MODTRAN radiative transfer code[C]//SPIE, 2014, 9088:10.1117/12.2050433.
    [15] Berk A, Conforti P, Hawes F. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption with 0.1 cm-1 bins and pre-computed line tails[C]//SPIE, 2015, 9471:10.1117/12.2177444.
    [16] Clough S A, Kneizys F X, Shettle E P, et al. Atmospheric radiance and transmittance:FASCOD2[C]//Proceedings of the Sixth Conference on Atmospheric Radiation, American Meteorological Society, 1986:141-144.
    [17] Zhou Fengxian, Wang Luyi. Fast and accurate software for atmospheric tranmittance calculation-FASCODE[J]. Journal of Infrared Millimeter Waves, 1991, 10(5):398-400. (in Chinese)周凤仙, 王路易. 快速精确计算大气透过率的微机软件包-FASCODE[J]. 红外与毫米波学报, 1991, 10(5):398-400.
    [18] Isaacs R G, Wang W C, Worsham R D, et al. Multiple scattering LOWTRAN and FASCODE models[J]. Applied Optics, 1987, 26(7):1272-1281.
    [19] Clough S A, Shephard M W, Mlawer E J, et al. Atmospheric radiative transfer modeling:a summary of the AER codes[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(2):233-244.
    [20] Alvarado M J, Payne V, Mlawer E J, et al. Performance of the line-by-line radiative transfer model (LBLRTM) for temperature, water vapor, and trace gas retrievals:recent updates evaluated with IASI case studies[J]. Atmospheric Chemistry and Physics, 2013, 13(14):6687-6711.
    [21] Chen Xiuhong, Wei Heli. Transplantation of LBLRTM from Workstation to PC[J]. Journal of atmospheric and Environmental Optics, 2007, 2(2):99-103. (in Chinese)陈秀红, 魏合理. LBLRTM从工作站到PC机的移植[J]. 大气与环境光学学报, 2007, 2(2):99-103.
    [22] Chen Xiuhong, Wei Heli, Xu Qingshan. Infrared atmospheric transmittance calculation model[J]. Infrared and Laser Engineering, 2011, 40(5):811-816. (in Chinese)陈秀红, 魏合理, 徐青山. 红外大气透过率的计算模式[J]. 红外与激光工程, 2011, 40(5):811-816.
    [23] Lamouroux J, Gamache R R, Laraia A L, et al. Semiclassical calculations of half-widths and line shifts for transitions in the 3001200001 and 3001300001 bands of CO2. III:Self collisions[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(12):1536-1546.
    [24] Wei H, Chen X, Rao R, et al. A Moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation[J]. Optics Express, 2007, 15(13):8360-8370.
    [25] Chen X H, Wei H L, Wei Y L, et al. Comparison of infrared atmospheric transmittance calculated by CART software with measured values[J]. Laser Infrared, 2009, 39(4):403-406.
    [26] Wei Heli, Chen Xiuhong, Dai Congming. Combined atmospheric radiative transfer (CART) model and its applications[J]. Infrared and Laser Engineering, 2012, 41(12):3360-3366. (in Chinese)魏合理, 陈秀红, 戴聪明. 通用大气辐射传输软件(CART)及其应用[J]. 红外与激光工程, 2012, 41(12):3360-3366.
    [27] Dai Congming, Wei Heli, Chen Xiuhong. Validation of the precision of atmospheric molecular absorption and thermal radiance calculated by combined atmospheric radiative transfer(CART) code[J]. Infrared and Laser Engineering, 2013, 42(6):1575-1581. (in Chinese)戴聪明, 魏合理, 陈秀红. 通用大气辐射传输软件(CART)大气散射辐射计算精度验证[J]. 红外与激光工程, 2013, 42(6):1575-1581.
    [28] Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds:The software package OPAC[J]. Bulletin of the American Meteorological Society, 1998, 79(5):831-844.
    [29] Kotchenova S Y, Vermote E F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II:homogeneous lambertian and anisotropic surfaces[J]. Applied Optics, 2007, 46(20):4455-4464.
    [30] Iacono M J, Delamere J S, Mlawer E J, et al. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J]. Journal of Geophysical Research, 2008, 113, D13103:10.1029/2008JD009944.
    [31] Emde C, Buras-Schnell R, Kylling A, et al. The libradtran software package for radiative transfer calculations (version 2.0.1)[J]. Geoscientific Model Development, 2016, 9(5):1647-1672.
    [32] Li Shulei, Liu Lei, Gao Taichang. Introduction of atmospheric radiative transfer simulator software[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(4):241-248. (in Chinese)李书磊, 刘磊, 高太长. 大气辐射传输模拟器(ARTS)软件的介绍[J]. 大气与环境光学学报, 2016, 11(4):241-248.
    [33] Volz F E. Photometer mit Selen-photoelement zur spektralen Messung de Sonnenstrahlung und zer Bestimmung der Wallenlangenabhangigkeit der Dunsttrubun[J]. Arch Meteor Geophys Bioklim, 1959, B10:100-131.
    [34] Mao Jietai, Li Jianguo. Visibility and telephotometer[J]. Scientia Atmospherica Sinica, 1984, 8(2):170-177. (in Chinese)毛节泰, 李建国. 气象能见度与望远光度计[J]. 大气科学, 1984, 8(2):170-177.
    [35] Tan Kun, Wang Jie, Tu Chuanfang, et al. Multi-purpose solar photometer[J]. Acta Optica Sinica, 1991, 11(5):448-452. (in Chinese)谭锟, 王洁, 屠传芳, 等. 多功能太阳辐射计[J].光学学报, 1991, 11(5):448-452.
    [36] Zhan Jie, Tan Kun, Shao Shisheng, et al. Portable autocontrol solar photometer[J]. Chinese Journal of Quantum Electronics, 2001, 18(6):551-555. (in Chinese)詹杰, 谭锟, 邵石生, 等. 便携式自动太阳辐射计[J]. 量子电子学报, 2001, 18(6):551-555.
    [37] Huang Sheng, Jing Xu, Tan Fengfu, et al. Measurement and calibration methods for total atmospheric continuous transmittance[J]. Chinese Journal of Lasers, 2017, 44(7):0710001. (in Chinese)黄晟, 靖旭, 谭逢富, 等. 整层大气连续透过率的测量与标定方法[J]. 中国激光, 2017, 44(7):0710001.
    [38] Zhan Jie, Guo Ruipeng, Rao Ruizhong. Measurement of atmospheric transmittance in the visible and near infrared[J]. Journal of Atmospheric and Environmental Optics, 2006, 1(3):179-183. (in Chinese)詹杰, 郭瑞鹏, 饶瑞中. 可见到近红外波段整层大气透过率的测量[J]. 大气与环境光学学报, 2006, 1(3):179-183.
    [39] Wang Hao, He Feng, Jing Xu, et al. Study on measurement of total atmospheric transmittance in daytime and night observation stars[J]. Infrared and Laser Engineering, 2019, 48(3):0311001. (in Chinese)王浩, 何枫, 靖旭, 等. 昼夜观测恒星整层大气透过率测量研究[J]. 红外与激光工程, 2019, 48(3):0311001.
    [40] Roney P L, Reid F, Theriault J M. Transmission window near 2400 cm-1:An experimental and modeling study[J]. Applied Optics, 1991, 30(15):1995-2004.
    [41] L Weiyu, Zhu Wenyue, Li Zhichao, et al. Measurements of atmospheric transmittance based on fourier transform infrared spectrometer[J]. Journal of Atmospheric and Environmental Optics, 2010, 5(1):26-31. (in Chinese)吕炜煜, 朱文越, 李志朝, 等. 基于傅立叶变换红外光谱仪的水平大气透过率测量研究[J]. 大气与环境光学学报, 2010, 5(1):26-31.
    [42] Paine S, Blundell R, Cosmo Papa D, et al. A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths[J]. Publications of the Astronomical Society of the Pacific, 2000, 112:108-118.
    [43] Weidmann D, Reburn W J, Smith K M. Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer:results and analysis[J]. Applied Optics, 2007, 46(29):7162-7171.
    [44] Wilson E L, McLinden M L, Miller J H, et al. Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column[J]. Applied Physics B, 2014, 114(3):385-393.
    [45] Peyton B, DiNardo A, Cohen S, et al. An infrared heterodyne radiometer for high-resolution measurements of solar radiation and atmospheric transmission[J], IEEE Journal of Quantum Electronics, 1975, 11:569-574.
    [46] Tan Tu, Cao Zhensong, Wang Guishi, et al. Study on the technolgy of the 4.4m mid-infrared laser heterodyne spectrum[J]. Spectroscopy and Spectral Analysis, 2015, 35(6):1516-1519. (in Chinese)谈图, 曹振松, 王贵师, 等. 4.4m中红外激光外差光谱探测技术研究[J]. 光谱学与光谱分析, 2015, 35(6):1516-1519.
    [47] Wu Qingchuan, Huang Yinbo, Tan Tu, et al. High-resolution atmospheric-transmission measurement using a laser heterodyne radiometer[J]. Spectroscopy and Spectral Analysis, 2017, 37(6):1678-1682. (in Chinese)吴庆川, 黄印博, 谈图, 等. 基于激光外差技术的高分辨率整层大气透过率测量[J]. 光谱学与光谱分析, 2017, 37(6):1678-1682.
    [48] Liu Junchi, Li Hongwen, Wang Jianli, et al. Measurement of mid-infrared total atmospheric transmittance and ite error analysis[J]. Optics and Precision Engineering, 2015, 23(6):1547-1557. (in Chinese)刘俊池, 李洪文, 王建立, 等. 中波红外整层大气透过率测量及误差分析[J]. 光学精密工程, 2015, 23(6):1547-1557.
    [49] Zhao Zhijun, Xu Fangyu, Wei Chaoqun, et al. Study on measurement method for total infrared atmospheric transmittance[J]. Infrared Technology, 2018, 40(7):718-722. (in Chinese)赵志军, 许方宇, 魏超群, 等. 红外整层大气透过率测量方法研究[J]. 红外技术, 2018, 40(7):718-722.
    [50] Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203:3-69.
    [51] Liu Dandan, Huang Yinbo, Dai Congming, et al. Effect of changes of HITRAN database on transmittance calculation in mid-infrared region along vertical uplink[J]. Infrared and Laser Engineering, 2013, 42(7):1776-1782. (in Chinese)刘丹丹, 黄印博, 戴聪明, 等. 不同版本HITRAN数据库中红外波段上行传输透过率的计算[J]. 红外与激光工程, 2013, 42(7):1776-1782.
    [52] Sun Mingguo, Ma Hongliang, Cao Zhensong, et al. Measurement and application of CO2 spectroscopic parameters near 2.0m[J]. Spectroscopy and Spectral Analysis, 2014, 34(11):2881-2886. (in Chinese)孙明国, 马宏亮, 曹振松, 等. 2m附近CO2谱线参数测量及应用[J]. 光谱学与光谱分析, 2014, 34(11):2881-2886.
    [53] Liu G L, Wang J, Tan Y, et al. Line positions and N2-induced line parameters of the 003-000 band of 14N216O by comb-assisted cavity ring-down spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 229:17-22.
    [54] Ma H, Liu Q, Cao Z, et al. Temperature dependences for N2- and air-broadened Lorentz half-width coefficients of methane transitions around 3.38m[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 171:50-56.
    [55] Richard C, Gordon I E, Rothman L S, et al. New section of the HITRAN database:Collision-induced absorption (CIA)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113:1276-1285.
    [56] Liu Kai, Wei Lixin, Chen Zhikun, et al. Radiosonde observations at the southwest continent and analysis of atmospheric vertical structure characteristics if the Antarctic[J]. Chinese Journal of Polar Research, 2019, 31(1):13-24. (in Chinese)刘凯, 魏立新, 陈志昆, 等. 夏季西南极探空观测以及南极大陆大气垂直结构特征分析[J]. 极地研究, 2019, 31(1):13-24.
    [57] Wang Yuxun, Wang Rui, Yan Wei, et al. Data simulation and parameter inversion based on microwave hyperspectral technology[J]. Journal of Microwaves, 2019, 35(2):75-80. (in Chinese)王玉训, 王蕊, 严卫, 等. 基于微波高光谱技术的数据仿真及参数反演研究[J]. 微波学报, 2019, 35(2):75-80.
    [58] Tao Zongming, Shi Qibing, Xie Chenbo, et al. Precise detection of near ground aerosol extinction coefficient profile based on CCD and backscattering lidar[J]. Infrared and Laser Engineering, 2019, 48(S1):S106007. (in Chinese)陶宗明, 施奇兵, 谢晨波, 等. 利用CCD和后向散射激光雷达精确探测近地面气溶胶消光系数廓线[J]. 红外与激光工程, 2019, 48(S1):S106007.
    [59] Ma Xiaomin, Tao Zongming, Zhang Lulu, et al. Ground layer aerosol detection technology during daytime based on side-scattering lidar[J]. Acta Optica Sinica, 2018, 38(4):0401005. (in Chinese)麻晓敏, 陶宗明, 张璐璐, 等. 侧向散射激光雷达探测白天近地面气溶胶探测技术[J]. 光学学报, 2018, 38(4):0401005.
    [60] Liu Zeyang, Li Xuebin, Sun Gang, et al. Analysis of seasonal change characteristics of aerosol optical depth in Delingha and Hefei[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(3):185-192. (in Chinese)刘泽阳, 李学彬, 孙刚, 等. 德令哈和合肥地区气溶胶光学厚度季节变化特征分析[J]. 大气与环境光学学报, 2018, 13(3):185-192.
    [61] Huang Sheng. The design and related data analysis of solar spectral radiometer from visible to near infrared bands[D]. Changsha:University of Science and Technology of China, 2018. (in Chinese)黄晟. 可见到近红外太阳光谱辐射计的研制与相关数据分析[D]. 长沙:中国科学技术大学, 2018.
    [62] Shaw G E. Error analysis of multi-wavelength sun photometry[J]. Pure and Applied Geophysics, 1976, 114(1):1-14.
    [63] Yang Zhifeng, Zhang Xiaoye, Che Huizheng, et al. An introductory study on the calibration of CE318 sunphotometer[J]. Journal of applied Meteorological Science, 2008, 19(3):297-306. (in Chinese)杨志峰, 张小曳, 车慧正, 等. CE318型太阳光度计标定方法初探[J]. 应用气象学报, 2008, 19(3):297-306.
    [64] Zhang Junhua, Wang Meihua, Mao Jietai. Error analysis and correction for multi-wavelength Sun-photometer aerosol remote sensing[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(6):855-859. (in Chinese)张军华, 王美华, 毛节泰. 多波段光度计遥感气溶胶误差分析及订正[J]. 大气科学, 2000, 24(6):855-859.
    [65] Bruce C K, Zheng Q, Alexander F H G. Direct solar spectral irradiance and transmittance measurements from 350 to 2500 nm[J]. Applied Optics, 2001, 40(21):3483-3494.
    [66] Qie L L, Dai C M, Xu Q S, et al. Calibration of near-infrared absorption band for a sun-photometer[J]. Journal of Remote Sensing, 2012, 16(5):928-938.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(696) PDF downloads(68) Cited by()

Related
Proportional views

Research progress and related problems on the acquisition method of total atmospheric transmittance

doi: 10.3788/IRLA201948.1203004
  • 1. Key Laboratory of Atmospheric Optics,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China

Abstract: The total atmospheric transmittance is an important parameter reflecting the optical properties of the atmosphere. In the fields of atmospheric radiation, remote sensing, air quality monitoring and opto-electronic engineering, it is necessary to make a deep study on the atmospheric transmittance. In this paper, the methods of acquiring atmospheric transmittance were discussed in detail, and the latest progress and related problems of different acquisition methods were analyzed. The characteristics of software based simulation and direct measurement were compared and analyzed, and at the last, the future research was also prospected.

Reference (66)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return