Volume 48 Issue S1
May  2019
Turn off MathJax
Article Contents

Yao Jiaqi, Gao Xiaoming, Li Guoyuan, Yang Xiongdan, Lu Jing, Li Canhai. Cloud optical depth inversion of echo energy data based on ICESat/GLAS[J]. Infrared and Laser Engineering, 2019, 48(S1): 126-134. doi: 10.3788/IRLA201948.S117009
Citation: Yao Jiaqi, Gao Xiaoming, Li Guoyuan, Yang Xiongdan, Lu Jing, Li Canhai. Cloud optical depth inversion of echo energy data based on ICESat/GLAS[J]. Infrared and Laser Engineering, 2019, 48(S1): 126-134. doi: 10.3788/IRLA201948.S117009

Cloud optical depth inversion of echo energy data based on ICESat/GLAS

doi: 10.3788/IRLA201948.S117009
  • Received Date: 2018-11-09
  • Rev Recd Date: 2018-12-14
  • Publish Date: 2019-04-25
  • Satellite laser altimetry can quickly and efficiently obtain the 3D coordinate data of ground points with high precision elevation, but the laser was inevitably affected by clouds in atmospheric transmission. Firstly, echo waveforms were fitted according to the echo energy data recorded in the atmospheric transmission process by the geoscience laser altimeter system(GLAS). Secondly, the differential zero-crossing method and Fernald method were used to realize cloud detection and cloud optical depth inversion respectively. Finally, moderate-resolution imaging spectroradiometer(MODIS) data and aerosol robotic network(AERONET) ground station data from Beijing region were employed to perform a validation analysis. The results show that the method presented in this paper has a high credibility in the optical depth inversion of the cloud by laser altimetry satellite. In the actual situation, the cloud optical depth inversion error is less than 0.1, and when the cloud optical depth is less than 1, the relative error is far less than 0.01. The relevant conclusions are of reference value for the quality control of the laser altimetry data of domestic satellites.
  • [1] Tang Xinming, Li Guoyuan. Development and prospect of laser altimetry satellite[J]. Space International, 2017(11):13-18. (in Chinese)唐新明,李国元. 激光测高卫星的发展与展望[J]. 国际太空, 2017(11):13-18.
    [2] Li Guoyuan, Tang Xinming. Analysis and validation of ZY-3-02 satellite laser altimetry data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(12):1939-1949. (in Chinese)李国元, 唐新明. 资源三号02星激光测高精度分析与验证[J]. 测绘学报, 2017, 46(12):1939-1949.
    [3] Tang Xinming, Li Guoyuan, Gao Xiaoming, et al. The rigorous geometric model of satellite laser altimeter and preliminarily accuracy validation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10):1182-1191. (in Chinese)唐新明, 李国元, 高小明, 等. 卫星激光测高严密几何模型构建及精度初步验证[J]. 测绘学报, 2016, 45(10):1182-1191.
    [4] Waleed Abdalati, Zwally H J, Robert Bindschadler, et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 2010, 98(5):735-751.
    [5] Yang Fan, Wen Jiahong, Weili Wang, et al. Application progress and prospect of ICESat and icesat-2[J]. Chinese Journal of Polar Research, 2011, 23(2):138-148. (in Chinese)杨帆, 温家洪, Weili Wang, 等. ICESat与ICESat-2应用进展与展望[J]. 极地研究, 2011, 23(2):138-148.
    [6] Xie Dongping, Li Guoyuan, Tang Xinming, et al. GEDI space-based laser altimetry system and its application in the United States[J]. Space International, 2018(12):39-42. (in Chinese)谢栋平, 李国元, 唐新明, 等. 美国GEDI天基激光测高系统及其应用[J]. 国际太空, 2018(12):39-42.
    [7] Anthony W Y, Michael A K, David J H, et al. Development effort of the airborne lidar simulator for the lidar surface topo-graphy (LIST) mission[C]//Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VⅡ. Interna-tional Society for Optics and Photonics, 2011, 8182(3):818207.
    [8] Li Guoyuan, Huang Jiapeng, Tang Xinming, et al. Influence of range gate width on detection probability and ranging accuracy of single photon laser altimetry satellite[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11):1487-1494. (in Chinese)李国元, 黄佳鹏, 唐新明, 等. 距离门宽度对单光子激光测高卫星探测概率及测距精度的影响[J]. 测绘学报, 2018, 47(11):1487-1494.
    [9] Winker D M, Vaughan M A. Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs[J]. Atmospheric Research, 1994, 34(1-4):117-133.
    [10] James D K. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2):211-220.
    [11] Zhien Wang,Kenneth Sassen. Cloud type and macrophysical property retrieval using multiple remote sensors[J]. Journal of Applied Meteorology, 2001, 40(10):1665-1683.
    [12] Han D W, Liu W Q, Zhang Y J, et al. Memorable glide window integral algorithm for retrieving cloud height[J]. High Power Laser Particle Beams, 2008, 20(1):1-5.
    [13] Pal S R, Steinbrecht W, Carswell A I. Automated method for lidar determination of cloud-base height and vertical extent[J]. Applied Optics, 1992, 31(10):1488-1494.
    [14] Mao Feiyue, Gong Wei, Li Jun, et al. Cloud detection and parameter retrieval based on improved differential zero-crossing method for mie lidar[J]. Acta Optica Sinica, 2010, 30(11):3097-3102. (in Chinese)毛飞跃, 龚威, 李俊, 等. 基于改进微分零交叉法的米氏散射激光雷达云检测与参数反演[J]. 光学学报, 2010, 30(11):3097-3102.
    [15] David P D, James D S, Edwin W E. Atmospheric multiple scattering effects on GLAS altimetry-part I:Calculations of single pulse bias[J]. IEEE Transactions on Geoscience Remote Sensing, 1999, 39(1):92-101.
    [16] Mahesh A, Spinhirne J D, Duda D P, et al. Atmospheric multiple scattering effects on GLAS altimetry-part Ⅱ:Analysis of expected errors in Antarctic altitude measurements[J]. IEEE Transactions on Geoscience Remote Sensing, 2002, 40(11):2353-2362.
    [17] Liu Jinhuan. Optical transform of Gaussian beam[J]. Optics and Precision Engineering, 1994, 2(3):15-21. (in Chinese)刘金环. 高斯光束的光学变换[J]. 光学精密工程, 1994, 2(3):15-21.
    [18] He Junfeng, Liu Wenqing, Zhang Yujun, et al. New method of lidar ceilometer backscatter signal processing based on Hilbert-Huang transform[J]. Infrared and Laser Engineering, 2012, 41(2):397-403. (in Chinese)何俊峰, 刘文清, 张玉钧, 等. HHT在激光云高仪后向散射信号处理中的应用[J]. 红外与激光工程, 2012, 41(2):397-403.
    [19] Zhang Gaixia, Zhang Yinchao, Hu Shunxing. Slant measurements of atmospheric boundary layer aerosol with mobile lidar[J]. Acta Optica Sinica, 2004, 24(8):1015-1019. (in Chinese)张改霞, 张寅超, 胡顺星. 车载测污激光雷达对大气边界层气溶胶的斜程探测[J]. 光学学报, 2004, 24(8):1015-1019.
    [20] Yang Yanjie. Analysis of atmospheric impact of 1.064m laser on air transmission[J]. Science Technology Information, 2018(3):56-57. (in Chinese)杨彦杰. 1.064m激光在对空传输中的大气影响分析[J]. 科技资讯, 2018(3):56-57.
    [21] Bugaichuk S A, Khizhnyak A I. Steady state and dynamic gratings in photorefractive four-wave mixing[J]. Journal of the Optical Society of America B, 1998, 15(7):2107-2113.
    [22] Fernald F G. Analysis of atmospheric lidar observations:some comments[J]. Applied Optics, 1984, 23(5):000652.
    [23] Yuan Song, Xin Yu, Zhou Jun. Lidar observations of the lower atmosphere in Hefei[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(3):387-395. (in Chinese)袁松, 辛雨, 周军. 合肥市郊低层大气的激光雷达探测研究[J]. 大气科学, 2005, 29(3):387-395.
    [24] Kovalev V A, William E E. Elastic Lidar Theory Practice Analysis Methods[M]. US:Wiley-Interscience, 2004.
    [25] Xiong Xinglong, Li Meng, Jiang Lihui, et al. The study of the lidar ratio retrieval method with multiple scattering cirrus cloud[J]. Journal of OptoelectronicsLaser, 2014, 25(6):1158-1164. (in Chinese)熊兴隆, 李猛, 蒋立辉, 等. 多次散射的卷云激光雷达比反演方法研究[J]. 光电子激光, 2014, 25(6):1158-1164.
    [26] Ansmann A, Wandinger U. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar[J]. Applied Optics, 1992, 31(33):007113.
    [27] Wang Xiangchuan, Rao Ruizhong. Lidar ratios for atmospheric aerosol and cloud particles[J]. Chinese Journal of Lasers, 2005, 32(10):1321-1324. (in Chinese)王向川, 饶瑞中. 大气气溶胶和云雾粒子的激光雷达比[J]. 中国激光, 2005, 32(10):1321-1324.
    [28] Ephraim Zehavi. 8-PSK trellis codes for a Rayleigh channel[J]. IEEE Trans Commun, 1992, 40(5):873-884.
    [29] Liu Zhao. Research on boundary layer height detection based on CALIPSO spaceborne lidar[D]. Beijing:University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2017. (in Chinese)刘诏. 基于CALIPSO星载激光雷达的边界层高度探测研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
    [30] Smirnov A, Holben B N, Eck T F, et al. Cloud-screening and quality control algorithms for the AERONET database[J]. Remote Sensing of Environment, 2000, 73(3):337-349.
    [31] Li Jiaheng, Liu Houfeng, Zhao Danting. MODIS based aerosol optical thickness inversion algorithm and its application progress[J]. Green Technology, 2012(2):108-111. (in Chinese)李加恒, 刘厚凤, 赵丹婷. 基于MODIS的气溶胶光学厚度反演算法及应用进展[J]. 绿色科技, 2012(2):108-111.
    [32] Cheng Chen. Monte Carlo simulations of radiative transfer for space-borne lidar[D]. Hefei:University of Science and Technology of China, 2018. (in Chinese)程晨. 星载激光雷达辐射传输蒙特卡罗模拟[D]. 合肥:中国科学技术大学, 2018.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(520) PDF downloads(37) Cited by()

Related
Proportional views

Cloud optical depth inversion of echo energy data based on ICESat/GLAS

doi: 10.3788/IRLA201948.S117009
  • 1. School of Surveying,Mapping and Geographical Sciences,Liaoning University of Engineering and Technology,Fuxin 123000,China;
  • 2. Land Satellite Remote Sensing Application Center,Ministry of Natural Resources of P. R. China,Beijing 100048,China

Abstract: Satellite laser altimetry can quickly and efficiently obtain the 3D coordinate data of ground points with high precision elevation, but the laser was inevitably affected by clouds in atmospheric transmission. Firstly, echo waveforms were fitted according to the echo energy data recorded in the atmospheric transmission process by the geoscience laser altimeter system(GLAS). Secondly, the differential zero-crossing method and Fernald method were used to realize cloud detection and cloud optical depth inversion respectively. Finally, moderate-resolution imaging spectroradiometer(MODIS) data and aerosol robotic network(AERONET) ground station data from Beijing region were employed to perform a validation analysis. The results show that the method presented in this paper has a high credibility in the optical depth inversion of the cloud by laser altimetry satellite. In the actual situation, the cloud optical depth inversion error is less than 0.1, and when the cloud optical depth is less than 1, the relative error is far less than 0.01. The relevant conclusions are of reference value for the quality control of the laser altimetry data of domestic satellites.

Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return