Volume 49 Issue 12
Dec.  2020
Turn off MathJax
Article Contents

Wang Jing, Tian Hao. Terahertz flexible stretchable metasurface based on double resonance response (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201059. doi: 10.3788/IRLA20201059
Citation: Wang Jing, Tian Hao. Terahertz flexible stretchable metasurface based on double resonance response (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201059. doi: 10.3788/IRLA20201059

Terahertz flexible stretchable metasurface based on double resonance response (Invited

doi: 10.3788/IRLA20201059
  • Received Date: 2020-10-05
  • Rev Recd Date: 2020-11-16
  • Available Online: 2021-01-14
  • Publish Date: 2020-12-24
  • Active control of terahertz wave characteristics in stretchable devices is essential for advanced terahertz applications involving large mechanical deformation or stretching. Here, a dual band terahertz active control device based on different mechanisms was designed and fabricated by combining metal metasurface with elastic film polydimethylsiloxane. Based on the deformation mismatch between metal and elastic film under tension, the double band modulation effect was realized by using the periodically sensitive cross structure metasurface. Under 36% deformation, the dipole mode and the lattice resonance mode were exploited to experimentally achieve dual-band modulation with a modulation depth of 90% and a modulation depth of 78% at 1.26 THz and 2.41 THz, respectively. The operating frequency through the lattice mode had a large dynamic range, which could be tuned from 2.41 THz to 1.85 THz. Since the mechanisms of the electric dipole resonance mode and the periodic lattice resonance mode were independent from each other, the two resonance frequencies were designed independently, which allowed the frequency interval of the dual-band modulation to be geometrically adjustable. The stretchable metasurface presented in this paper is simple to prepare, and has the advantages of large intensity modulation depth and wide frequency tuning range. It can be used not only in active control of terahertz wave, but also in passive displacement sensing.
  • [1] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-Modern techniques and applications [J]. Laser & Photonics Reviews, 2011, 5(1): 1-43.
    [2] Hangyo M. Development and future prospects of terahertz technology [J]. Japanese Journal of Applied Physics, 2015, 54(12): 120101. doi:  10.7567/JJAP.54.120101
    [3] Chan W, Deibel J, Mittleman D. Imaging with terahertz radiation [J]. Reports on Progress in Physics, 2007, 70(8): 1325-1379. doi:  10.1088/0034-4885/70/8/R02
    [4] Ji H, Zhang B, Wang G, et al. Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure [J]. Optics Communications, 2018, 412: 37-40. doi:  10.1016/j.optcom.2017.11.080
    [5] Liu X, Fan K, Shadrivov I V, et al. Experimental realization of a terahertz all-dielectric metasurface absorber [J]. Optics Express, 2017, 25(1): 191-210. doi:  10.1364/OE.25.000191
    [6] Padilla W J, Taylor A J, Highstrete C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies [J]. Physical Review Letters, 2006, 96(10): 107401. doi:  10.1103/PhysRevLett.96.107401
    [7] Zhao X, Schalch J, Zhang J, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies [J]. Optica, 2018, 5(3): 303-310. doi:  10.1364/OPTICA.5.000303
    [8] Padilla W J, Basov D N, Smith D R. Negative refractive index metamaterials [J]. Materials Today, 2006, 9: 28-35.
    [9] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980. doi:  10.1126/science.1133628
    [10] Lagarkov A, Kissel V. Near-perfect imaging in a focusing system based on a left-handed-material plate [J]. Physical Review Letters, 2004, 92: 077401. doi:  10.1103/PhysRevLett.92.077401
    [11] Liu S, Chen H, Cui T J. A broadband terahertz absorber using multi-layer stacked bars [J]. Applied Physics Letters, 2015, 106(15): 151601. doi:  10.1063/1.4918289
    [12] Lv J, Yuan R Y, Song X, et al. Broadband polarization-insensitive terahertz absorber based on heavily doped silicon surface relief structures [J]. Journal of Applied Physics, 2015, 117(1): 013101. doi:  10.1063/1.4905386
    [13] Wang J, Tian H, Li S, et al. Efficient terahertz polarization conversion with hybrid coupling of chiral metamaterial [J]. Optics Letters, 2020, 45(5): 1276-1279. doi:  10.1364/OL.388722
    [14] Grady N K, Heyes J E, Dibakar Roy C, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction [J]. Science, 2013, 340(6138): 1304-1307. doi:  10.1126/science.1235399
    [15] Stephen L, Yogesh N, Subramanian V. Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial [J]. Journal of Applied Physics, 2018, 123(3): 033103. doi:  10.1063/1.5008614
    [16] Walia S, Shah C M, Gutruf P, et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales [J]. Applied Physics Reviews, 2015, 2(1): 011303. doi:  10.1063/1.4913751
    [17] Zhang F, Feng S, Qiu K, et al. Mechanically stretchable and tunable metamaterial absorber [J]. Applied Physics Letters, 2015, 106(9): 207402.
    [18] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate [J]. Nano Letters, 2016, 16(4): 2818-2823. doi:  10.1021/acs.nanolett.6b00618
    [19] Kim R, Chung K, Kim J Y, et al. Metal nanoparticle array as a tunable refractive index material over broad visible and infrared wavelengths [J]. ACS Photonics, 2018, 5(4): 1188-1195. doi:  10.1021/acsphotonics.7b01497
    [20] Peng W, Wu H. Flexible and stretchable photonic sensors based on modulation of light transmission [J]. Advanced Optical Materials, 2019, 7(12): 1900329. doi:  10.1002/adom.201900329
    [21] Xu Z, Lin Y S. A stretchable terahertz parabolic-shaped metamaterial [J]. Advanced Optical Materials, 2019, 7(19): 1900379. doi:  10.1002/adom.201900379
    [22] Morits D, Morits M, Ovchinnikov V, et al. Multifunctional stretchable metasurface for the THz range [J]. Journal of Optics, 2014, 16(3): 032001. doi:  10.1088/2040-8978/16/3/032001
    [23] Liu N, Giessen H. Coupling effects in optical metamaterials [J]. Angewandte Chemie International Edition, 2010, 49(51): 9838-9852. doi:  10.1002/anie.200906211
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(1)

Article Metrics

Article views(471) PDF downloads(32) Cited by()

Related
Proportional views

Terahertz flexible stretchable metasurface based on double resonance response (Invited

doi: 10.3788/IRLA20201059
  • Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, School of Physics, Harbin Institute of Technology, Harbin 150001, China

Abstract: Active control of terahertz wave characteristics in stretchable devices is essential for advanced terahertz applications involving large mechanical deformation or stretching. Here, a dual band terahertz active control device based on different mechanisms was designed and fabricated by combining metal metasurface with elastic film polydimethylsiloxane. Based on the deformation mismatch between metal and elastic film under tension, the double band modulation effect was realized by using the periodically sensitive cross structure metasurface. Under 36% deformation, the dipole mode and the lattice resonance mode were exploited to experimentally achieve dual-band modulation with a modulation depth of 90% and a modulation depth of 78% at 1.26 THz and 2.41 THz, respectively. The operating frequency through the lattice mode had a large dynamic range, which could be tuned from 2.41 THz to 1.85 THz. Since the mechanisms of the electric dipole resonance mode and the periodic lattice resonance mode were independent from each other, the two resonance frequencies were designed independently, which allowed the frequency interval of the dual-band modulation to be geometrically adjustable. The stretchable metasurface presented in this paper is simple to prepare, and has the advantages of large intensity modulation depth and wide frequency tuning range. It can be used not only in active control of terahertz wave, but also in passive displacement sensing.

    • 太赫兹波位于微波和红外之间,独特的光谱位置使其具有光子能量低、能量处于分子转振能级、能穿透非极性材料等多种特性,这些优异特性奠定了太赫兹波在生物化学、医学成像、宽带通信、雷达探测和无损检测等领域的巨大应用潜力[1-3]。但是由于自然界中缺乏在太赫兹波段具有响应能力的天然材料,基于传统光学手段的许多基本元器件在太赫兹波段十分匮乏,而电子学方法在太赫兹波段又存在频率上限且难以小型化,这些限制在早期极大的阻碍了太赫兹波段功能器件的发展。直到近年来,太赫兹领域中出现的超表面技术打破了天然材料的限制,直接促成了太赫兹技术的快速发展[4-7]。超表面作为一种集成化的人工亚波长周期阵列结构,其电磁特性可通过微结构的几何设计和材料选择来定制[8-10]。通过指向性的设计,超表面在太赫兹波段已经实现了吸收器、波片、透镜等元件的多种功能[11-15]。可是这仅仅解决了太赫兹波段基本被动式元器件的缺乏问题,在太赫兹技术的实用化过程中,主动式的调制器件依然需要长期的不断积累,因此可调谐太赫兹超表面作为操纵太赫兹波特性的主动器件引起了广泛的关注。

      作为可调谐超表面的一种,可拉伸超表面通过机械变形改变了阵列单元的周期或微结构的形状,从而诱导可拉伸器件的光学特性发生巨大变化。这种机械变形通常是通过拉伸弹性薄膜来实现的,其中弹性聚合物聚二甲基硅氧烷(PDMS)具有稳定性好、折射率低、损耗小等优点,是制作可伸缩超表面的理想基底[16]。基于PDMS的可拉伸超表面研究包括吸收器[17]、变焦透镜[18]、传感器[19-20]和调制器[21-22]等。然而,目前报道的大多数可拉伸超表面都是基于微结构的有限的共振频移,其对周期变化不够敏感。周期敏感的晶格共振的引入将有效改善超表面单位形变下的共振频移量,进而增强可拉伸器件的应用范围。

      文中采用传统紫外光刻和湿法刻蚀技术制造了可在太赫兹波段工作的由PDMS薄膜包裹的十字形金属阵列超表面。通过夹具将制备的PDMS基超表面沿不同方向拉伸可以调节超材料的谐振频率和光学透过特性。实验结果表明,在36%的拉伸比例下,我们利用超表面的金属单元共振和晶格共振分别在1.26 THz和2.41 THz处实现了调制深度为90%和78%的双带透过率调制效果。其中晶格共振频率数值上与周期成反比,因而随周期变化具有较大的动态范围,频率可从2.41 THz动态调谐至1.85 THz。此外由于金属单元共振和晶格共振的机理是相互独立的,因此可以独立设计两个谐振频率,使得双带间的频率间隔可以几何上调整。可拉伸超表面的高性能和简单的制备方法使其在太赫兹调制、宽带调谐和位移传感方面具有应用价值。

    • 以PDMS为基底的超表面制备主流上分为lift-off法与刻蚀法,由于PDMS基底的表面活性很低,光刻胶难以附着其上,lift-off方法需要先对PDMS基底进行表面处理以增强其表面活性,这无疑增大了实验难度。因此文中采用传统的紫外光刻和湿法腐蚀技术制作可拉伸超表面,制备过程展示在图1所示流程图中。首先在一个超声清洗干净的玻璃片上用真空旋涂机旋涂负性光刻胶层,烘干后通过紫外暴露作为牺牲层使用。实验中使用的有机弹性PDMS基底是美国道康宁公司生产的Sylgard 184硅胶,将Sylgard 184中的主剂与固化剂按照10∶1的重量比混合,磁力搅拌均匀后置于真空干燥器中脱气直到气泡完全去除。然后将液态的PDMS旋转涂布于带有牺牲层的玻璃片上,将玻璃片放入烘箱中在80 ℃下烘烤2 h,固化得到22 μm厚的PDMS薄膜。随后用磁控溅射镀膜机在PDMS表面沉积了一层200 nm厚的金属银。接下来在金属银上旋涂正性光刻胶,前烘后用光刻机紫外曝光将掩膜版上的十字结构转移光刻胶上,后烘显影后得到图案化的光刻胶层,将样品上暴露的银用Fe(NO3)3溶液腐蚀即可得到十字结构的金属银。最后在样品上旋涂覆盖一层14 μm厚的PDMS薄膜作为保护层以防止金属脱落,用丙酮溶解掉牺牲层,就能从玻璃片上剥离出具有银十字图案的PDMS薄膜。

      Figure 1.  Flow chart of stretchable metasurface preparation

      制备的可拉伸超表面实物图展现在图2(a)中,此时样品处于未拉伸状态,x轴方向宏观长度为L0。当通过夹具向样品施加沿x轴方向的拉伸移动时,图2(b)中显示样品在拉伸方向的宏观尺寸发生明显增大,此时长度为L。据此我们用拉伸比例S来精确描述样品的形变S = (LL0)/L0,实际涵义为长度增加量与样品初始长度的比例。

      Figure 2.  (a) Photograph of the sample; (b) Photograph of the stretched sample; (c) 3D schematic diagram of the stretchable metasurface; (d) Stretch deformation model of metasurface

      超表面三维结构示意图如图2(c)所示,整体呈现为两层PDMS弹性薄膜夹着中间金属银十字阵列的三明治结构。文中设计了三种不同参数的样品作为对比来研究可拉伸超材料的物理机理,具体参数在表1中列出。拉伸时样品宏观尺寸的变化必然导致微观上单元周期的改变,图2(d)所示为沿x轴几何变形的结构单元拉伸模型。根据该模型,x方向的周期将按拉伸比例增加,而y方向的周期只会轻微减小,研究中可以视为保持不变。此外,由于金属缺乏弹性,银十字图案的长度也将保持不变。因此拉伸过程中结构参数只有拉伸方向周期变为:

      SamplePeriod(P0)/μmLength(l)/μmWidth(w)/μm
      Sample 11108010
      Sample 21109010 μm
      Sample 31208010 μm

      Table 1.  Structural parameters of different samples

      在文中,可拉伸弹性超表面的太赫兹频率响应特性是通过德国BATOP公司生产的太赫兹时域光谱系统(THz-TDS)进行测量,如图3所示。时域光谱系统中太赫兹波源和探测器都是光电导天线,利用光电采样的方式采集太赫兹脉冲信号,所测试的弹性超表面被安装在定制的夹具上,该夹具一侧固定,另一侧可通过旋转旋钮移动,于是通过旋转旋钮即可控制样品的拉伸比例。在实验中,水平方向偏振的准直太赫兹波通过光阑后垂直入射到样品上,光阑确保了太赫兹波入射到样品的有效区域。

      Figure 3.  Time-domain spectroscopy test device diagram of samples

    • 在对弹性超表面的拉伸特性表征之前,分别对制备的三个样品进行了测试。通过THz-TDS直接测量得到的太赫兹透过信号是脉冲时域谱,需要对时域谱傅立叶变换求得频域谱信息。然后以空气的频域谱作为参考计算分析出可拉伸超表面的透过谱数据。为了更加直观地对比出样品参数对透过性能的影响,1号样品和2号样品未拉伸时的透过谱数据同时呈现在图4(a)中,1号样品和3号样品的透过谱则在图4(b)中给出,图中太赫兹频率范围为0.5~2.6 THz,频率范围受到使用的THz-TDS设备的限制。

      Figure 4.  (a) Transmission spectrum of sample 1 and sample 2; (b) Transmission spectrum of sample 1 and sample 3

      对比样品1和样品2的透过曲线,可以发现共同点是两个样品都能在较低频处和较高频激发出两个共振。但是样品1的两个共振频率分别是1.26 THz和2.41 THz,而样品2的两个共振位置在1.12 THz和2.39 THz。忽略由于制备和测试过程导致的微小误差,上述结果表明样品1和样品2在高频处的共振频率相同,样品2在低频处共振频率明显小于样品1。而样品1和样品2的参数区别仅仅在于样品1的十字金属长度小于样品2。由此可知,高频处共振与超表面金属结构尺寸无关,低频处共振频率flow与金属结构尺寸l成反比:${f_{{\rm{low}}}} = {V_{\rm{c}}}/2{n_{{\rm{eff}}}}l$,其中Vc为真空中光速,l为金属尺寸,有效折射率neff近似为PDMS基底折射率1.54[16]。因此,可以确认低频共振是能够被入射太赫兹波在金属结构上直接激发的电偶极子共振。

      进一步研究高频处共振来源与影响因素需要对比图4(b)中样品1和样品3的透过谱数据。样品1和样品3的参数区别是样品1的周期小于样品3。反映在图4(b)中就是样品3的高频共振频率2.05 THz明显小于样品1的2.41 THz。由于两个样品金属结构参数相同,因此低频的电偶极子共振频率差别不大,样品3的频率红移来源于周期增加导致的横向偶极子耦合作用减弱[23]。整体对三个样品的高频共振频率进行对比可以发现,高频共振仅仅与周期相关,且与周期成反比。类比晶体中晶格的定义,在超表面领域也称阵列单元为晶格,所以高频共振是一种晶格共振。可以得出的结论是当太赫兹波入射到十字金属超表面时,分别在低频和高频处激发电偶极子共振和晶格共振。

      接下来对样品1分别沿着x轴和y轴方向进行拉伸变形来实验研究了拉伸对弹性超表面谐振频率的影响。拉伸比例设置为0%、12%、24%、36%。文中定义TM波偏振方向和拉伸方向垂直,TE波偏振方向与拉伸方向平行。图5显示了样品在不同拉伸比例下的TM和TE波的实验测量透射光谱。从图5可以看出,PDMS的宏观形变导致了超表面响应的变化,表现为太赫兹波透射光谱的频率调谐。当样品处于初始状态,即拉伸比例S为0%时,具有四重旋转对称微结构的超表面对TM和TE波具有相同的响应,在1.26 THz和2.41 THz处分别激发了电偶极子共振和晶格共振。当TM波入射时,图5(a)显示随着拉伸比例的增加两个共振频率均明显红移。在外加36%的拉伸下,电偶极子共振频率从1.26 THz移动到1.08 THz,频移量为0.18 THz;晶格共振的频移量高达0.56 THz,从2.41 THz移动至1.85 THz。晶格共振的宽带频率可调谐性支撑了可拉伸超表面在电、热和光等常见控制方式之外的巨大潜力。与TM波相比,图5(b)所示TE波在样品拉伸变形过程中的透过谱变化表现出不同的行为。随着拉伸比例的增加,电偶极子共振频率发生蓝移,晶格共振模逐渐减弱。相对TM波而言,可拉伸超表面对TE波基本不具备频率调谐特性,而强度调制能力也较弱,因此实际使用中更关心TM波的透过响应。

      Figure 5.  (a) and (b) are transmission spectra of the metasurface under different stretching ratios when TM wave and TE wave are incident, respectively

      可拉伸超材料对TM波的强度调制能力和频率调谐性能在图6中展现。图6(a)描绘的是电偶极子共振的拉伸变化趋势,图中空心圆代表1.26 THz处的透过率,空心方块代表电偶极子共振频率。随着拉伸比例的增加,电偶极子共振频率从1.26 THz移到1.08 THz逐渐减小,拉伸灵敏度为0.5 THz/USR,单位中USR对应于单位拉伸比例,即S=100%。利用拉伸引起的透过谱移动,可以控制太赫兹波的传输调制,1.26 THz处的透过率随着拉伸增加从0.07升高到0.73,增长量达到0.66,这实现了高达90%的大调制深度。图6(b)展示了晶格共振的实验结果。在36%拉伸比例下,频移量可达0.56 THz,频率灵敏度为1.55 THz/USR。2.41 THz处透过率随着拉伸变形从0.19逐渐增加到0.87,透过率增长0.68,强度调制深度可达到78%。与电偶极子共振随拉伸比例的线性变化不同,晶格共振的强度调制能力在拉伸比例为12%时就达到饱和。

      Figure 6.  (a) and (b) are the resonant frequency shift and intensity modulation effect of electric dipole resonant and lattice resonant under stretching, respectively

    • 文中提出了一种将超表面与弹性材料相结合来调制太赫兹波的新方法。设计制备的PDMS基十字金属结构可拉伸超表面能够激发出金属的电偶极子共振和超表面阵列的晶格共振。在拉伸作用下,实验测得电偶极子共振能实现0.18 THz的频率调谐和调制深度超过90%的强度调制效果;同时还能利用晶格共振完成高达0.56 THz的频率调谐作用与78%的调制深度。可拉伸超表面优秀的调制性能使其在太赫兹主动控制领域前景广阔,而共振频率对形变的高度敏感又增添了其在传感器方向的应用潜力。

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return