Volume 49 Issue 12
Dec.  2020
Turn off MathJax
Article Contents

Liu Yichao, Zhou Yao, Zhao Jianxing, Zhou Jianhong, Song Yinglin. Surface enhanced nonlinear absorption of chalcogenide Ge28Sb12Se60 film (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201071. doi: 10.3788/IRLA20201071
Citation: Liu Yichao, Zhou Yao, Zhao Jianxing, Zhou Jianhong, Song Yinglin. Surface enhanced nonlinear absorption of chalcogenide Ge28Sb12Se60 film (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201071. doi: 10.3788/IRLA20201071

Surface enhanced nonlinear absorption of chalcogenide Ge28Sb12Se60 film (Invited)

doi: 10.3788/IRLA20201071
  • Received Date: 2020-09-01
  • Rev Recd Date: 2020-10-21
  • Available Online: 2021-01-14
  • Publish Date: 2020-12-24
  • A nano-structure that supported the localized surface plasmon (LSP) was fabricated by using thermal evaporation and annealing processes to enhance the nonlinear absorption of chalcogenide Ge28Sb12Se60 (GSS). The Z-scan experiment was carried out to measure the nonlinear refractive and nonlinear absorption of the fabricated samples. By analyzing the characteristics of the transmission spectra of the samples, the mechanism of the nonlinear absorption enhancement was revealed. Finally, the influence of the GSS thickness on the enhancement nonlinear absorption was studied. The proposed LSP nano-structure is easy in fabrication due to the lithography-free process, which provides significant reference for designing nonlinearty enhancement devices.
  • [1] 易传祥, 宋瑛林. 含相位物体的光学非线性测量技术研究进展[J]. 红外与激光工程, 2012, 41(6): 1610-1617. doi:  10.3969/j.issn.1007-2276.2012.06.039

    Yi Chuanxiang, Song Yinglin. Recent advance in optical nonlinearity measurement technique with phase object [J]. Infrared and Laser Engineering, 2012, 41(6): 1610-1617. (in Chinese) doi:  10.3969/j.issn.1007-2276.2012.06.039
    [2] 吴幸智, 刘大军, 杨俊义, 等. 新型金属铟酞菁酯的光学非线性和光限幅特性[J]. 红外与激光工程, 2014, 43(1): 108-112. doi:  10.3969/j.issn.1007-2276.2014.01.019

    Wu Xingzhi, Liu Dajun, Yang Junyi, et al. Optical nonlinear and optical limiting measurements of a new metal indium phthalocyanine [J]. Infrared and Laser Engineering, 2014, 43(1): 108-112. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.01.019
    [3] 王煜, 李云波, 宋瑛林. 测量光学非线性的 4f 相位相干成像技术研究进展[J]. 红外与激光工程, 2008, 37(4): 108-112.

    Wang Yu, Li Yunbo, Song Yinglin. Advances in 4f phase coherent imaging technique for measuring the optical nonlinear index [J]. Infrared and Laser Engineering, 2008, 37(4): 108-112. (in Chinese)
    [4] Pradhan P, Khan P, Aswin J R, et al. Quantification of nonlinear absorption in ternary As-Sb-Se chalcogenide glasses [J]. Journal of Applied Physics, 2019, 125: 015105. doi:  10.1063/1.5063864
    [5] Viswanathan A, Thomas S. Tunable linear and non linear optical properties of GeSeSb chalcogenide glass with solute concentration and with silver doping [J]. Journal of Alloys and Compounds, 2019, 798: 424-430. doi:  10.1016/j.jallcom.2019.05.261
    [6] Willets K A, Duyne R P V. Localized surface plasmon resonance spectroscopy and sensing [J]. Annual Review of Physical Chemistry, 2007, 58: 268-297.
    [7] Zong C, Xu M, Xu L, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges [J]. Chemical Reviews, 2018, 118(10): 4946-4980. doi:  10.1021/acs.chemrev.7b00668
    [8] Kinkhabwala A, Yu Z, Fan S, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna [J]. Nature Photonics, 2009, 3: 654-657.
    [9] Miao R, Zhang Y, Tang Y, et al. Photoluminescence enhancement and ultrafast relaxation dynamics in a low-dimensional heterostructure: effect of plasmon-exciton coupling[J]. Optics Letters, 43(24): 6093-6096.
    [10] Wen X, Xu W, Zhao W, et al. Plasmonic hot carriers-controlled second harmonic generation in WSe2 Bilayers [J]. Nano Letters, 2018, 18(3): 1686-1692. doi:  10.1021/acs.nanolett.7b04707
    [11] Hooper D C, Kuppe C, Wang D, et al. Second harmonic spectroscopy of surface lattice resonances [J]. Nano Letters, 2019, 19(1): 165-172. doi:  10.1021/acs.nanolett.8b03574
    [12] Xin H, Namgung B, Lee L P. Nanoplasmonic optical antennas for life sciences and medicine [J]. Nature Reviews Materials, 2018, 3: 228-243. doi:  10.1038/s41578-018-0033-8
    [13] Miao R, Shu Z, Hu Y, et al. Ultrafast nonlinear absorption enhancement of monolayer MoS2 with plasmonic Au nanoantennas [J]. Optics Letters, 2019, 44(13): 3198-3201. doi:  10.1364/OL.44.003198
    [14] Alam M Z, Schulz S A, Upham J, et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material [J]. Nature Photonics, 2018, 12: 79-83. doi:  10.1038/s41566-017-0089-9
    [15] Kong X, Fu Y, Zhang W, et al. Analysis of random antireflective structures fabricated by silver dewetting to enhance transmission [J]. Journal of Nanophotonics, 2017, 11(3): 036019.
    [16] Tintu R, Nampoori V P N, Radhakrishnan P, et al. Nanocomposite thin films of Ga5Sb10Ge25Se60 chalcogenide glass for optical limiting applications [J]. Optical Materials, 2011, 33(8): 1221-1225. doi:  10.1016/j.optmat.2011.02.015
    [17] Pradeep C, Mathew S, Nithyaja B, et al. Studies of nonlinear optical properties of PicoGreen dye using Z-scan technique [J]. Applied Physics A, 2014, 115: 291-295. doi:  10.1007/s00339-013-7814-0
    [18] Sheik-Bahae M, Said A A, Wei T. Sensitive measurement of optical nonlinearities using a single beam [J]. IEEE Journal of Quantum Electronics, 1990, 26(4): 760-769. doi:  10.1109/3.53394
    [19] Wang X, Yao L, Li S, et al. Extraordinarily large third-order optical nonlinearity in Au nanorods under nanowatt laser excitation [J]. Journal of Physical Chemistry C, 2020, 124(12): 6838-6844. doi:  10.1021/acs.jpcc.0c00534
    [20] Liu N, Weiss Thomas, Mesch M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing [J]. Nano Letters, 2010, 10: 1103-1107. doi:  10.1021/nl902621d
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(531) PDF downloads(34) Cited by()

Related
Proportional views

Surface enhanced nonlinear absorption of chalcogenide Ge28Sb12Se60 film (Invited)

doi: 10.3788/IRLA20201071
  • 1. School of Photoelectric Engineering, Changchun University of Science and Technology, Changchun 130000, China
  • 2. Key Laboratory of Optoelectric Measurement and Optical Information Transmission Technology of Ministry of Education, Changchun University of Science and Technology, Changchun 130000, China
  • 3. Department of Physics, Harbin Institute of Technology, Harbin 150001, China

Abstract: A nano-structure that supported the localized surface plasmon (LSP) was fabricated by using thermal evaporation and annealing processes to enhance the nonlinear absorption of chalcogenide Ge28Sb12Se60 (GSS). The Z-scan experiment was carried out to measure the nonlinear refractive and nonlinear absorption of the fabricated samples. By analyzing the characteristics of the transmission spectra of the samples, the mechanism of the nonlinear absorption enhancement was revealed. Finally, the influence of the GSS thickness on the enhancement nonlinear absorption was studied. The proposed LSP nano-structure is easy in fabrication due to the lithography-free process, which provides significant reference for designing nonlinearty enhancement devices.

  • 硫系玻璃,指一些含有硫(S)、硒(Se)、碲(Te)元素的非晶材料,具有良好的红外透过率、高折射率、相变特性以及较大的光学非线性。主要应用在红外光纤传感、集成光子存储、以及动态显示等方面。其中光学非线性对光或光与物质相互的超快调控起着非常重要的作用[1-3]。针对硫系玻璃的光学非线性已经有了较深入的研究[4-5]。局域表面等离子体激元(LSP),源于金属纳米结构中的自由电子随入射光场的共振,具有局域的光捕获、电磁场增强等优秀特性[6]。这些特性使得LSP在很多领域得到了广泛的应用,如表面增强光谱学[7-9],非线性光学[10-11],生命科学[12]等。近年来,利用LSP增强材料的非线性吸收和折射成为了热门话题[13-14],而LSP增强硫系玻璃的非线性折射和吸收还很少有研究报导。

    文中通过对银膜退火,形成支持LSP的微纳结构,实现了对硫系玻璃Ge28Sb12Se60(GSS)薄膜在532 nm激光作用下的非线性吸收的增强效应,增强效果可达2倍。首先利用热蒸发镀膜工艺在石英基底上镀银膜,随后利用退火工艺使银膜形成微纳结构以支持532 nm附近的LSP,再用热蒸发方法继续镀膜GSS,得到对GSS薄膜光学非线性的增强的结构;然后搭建了Z-scan光路对已制备样品的非线性吸收进行测量,通过拟合数据比较各样品非线性吸收系数之间的关系;通过光谱分析,揭示了GSS非线性吸收增强效应的原理;最后研究了退火银微纳结构对不同厚度GSS非线性吸收的增强效果变化。文中研究对研究无光刻的光学非线性增强技术提供了重要的参考。

  • 石英基片清洗:去离子水冲洗,然后用碱液煮沸5 min,再用酸液煮沸5 min。采用热蒸发方法在石英基底上镀膜:直接在石英基片上镀膜GSS,厚度20 nm,为样品1;石英基底上镀银薄膜,厚度20 nm,继续镀膜GSS,厚度20 nm,为样品2;石英基底镀膜Ag,厚度20 nm,退火(放到马弗炉中加热到270 ℃持续1 min后自然冷却),形成随机岛状银结构[15],继续镀膜GSS,厚度20 nm,为样品3。流程如图1所示。

    Figure 1.  Fabrication process of the three kinds of samples

    碱液:氨水、过氧化氢、去离子水体积比1∶2∶5;酸液:盐酸、过氧化氢、去离子水体积比1∶2∶8。文中采用热蒸发方法镀膜(加拿大Angstrom Engineering公司镀膜机),GSS、Ag镀膜速度分别为$0.015\;{{{\rm{nm}}} / {\rm{s}}}$$0.01\;{{{\rm{nm}}} / {\rm{s}}}$。热蒸发银靶材为纯银颗粒(99.999%);热蒸发GSS靶材为体硫系玻璃Ge28Sb12Se60研成粉末。采用镭宝公司Dawa纳秒固体激光器(波长532 nm,脉宽≈7.5 ns)对样品进行Z-scan测试,Z-scan光路如图2所示。

    Figure 2.  Z-scan optical path for optical nonlinear refraction and nonlinear absorption measurement of samples

  • 由于开孔和闭孔Z-scan远场透过率可以表示为公式(1)~(2)[16,17]

    式中:$m$为整数;$q\left( {{\textit{z}},0} \right) = \beta {I_0}\left( t \right){L_{{\rm{eff}}}}$$\; \beta $为非线性吸收系数,${L_{{\rm{eff}}}} = \left( {\dfrac{{1 - {{\rm{e}}^{ - \alpha L}}}}{\alpha }} \right)$为有效作用长度,$\alpha $为线性吸收系数。

    式中:$\Delta \phi = 2\pi \left( {{{{n_2}{I_0}\left( t \right){L_{{\rm{eff}}}}} / \lambda }} \right)$为焦点处相位变化,${I_0}$为交点处激光能量;$\gamma = \left( {{{\textit{z}} / {{{\textit{z}}_0}}}} \right)$${\textit{z}}$为样品离焦点的位移,${{\textit{z}}_0}$为瑞利长度。非线性折射系数为${n_2} = \dfrac{{c{n_0}\Delta \phi \lambda }}{{80{\pi ^2}{I_0}{L_{{\rm{eff}}}}}}\left( {{\rm{esu}}} \right)$,其中$c$为真空光速,${n_0}$为样品线性折射率。

    首先对标准样品CS2进行了闭孔Z-scan测试(未展示),经过计算得到CS2的非线性折射系数为${n_2} = 1.3 \times {10^{ - 11}}\;({\rm{esu}})$,与已报导的工作的结果吻合[18],由此可以推断出光路的准确性。然后对已制备的三个样品进行开孔Z-scan测试。由于样品的非线性折射现象需要很高的能量,会导致薄膜的损坏,所以文中只研究样品的非线性吸收现象。图3(a)3(b)3(c)中红色圆圈分别为样品1 (只有20 nm的GSS)、样品2 (20 nm厚的银膜加20 nm厚的GSS)和样品3 (20 nm厚的银膜退火处理加20 nm厚的GSS)的开孔Z-scan数据(${I_0} = 0.34$ μJ)。可以看出三种样品都表现为明显的反饱和吸收现象[19]。通过公式(1)拟合得到黑色实曲线与之吻合,计算得到样品1、2、3的非线性吸收系数分别为${\;\beta _1} = 3.1 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$${\;\beta _2} = 2.9 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$${\;\beta _3} = 6.3 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$。通过比较三组结果,可以看出20 nm银膜对GSS膜的非线性吸收系数几乎无影响,而退火处理后的20 nm银膜对GSS膜的非线性吸收系数增强到近2倍(退火处理后的银膜此时无非线性吸收现象,文中未展示)。这是因为退火处理后的银膜形成的微纳结构充当了金属纳米天线,而这些天线结构与入射光相互作用形成局域表面等离子体共振,其局域电场增强效果导致了GSS薄膜非线性吸收现象的增强[13-14]

    Figure 3.  Open aperture Z-scan results obtained from experimental measurement and theoretically fitting. (a) GSS 20 nm only; (b) Ag 20 nm coated with GSS 20 nm; (c) Annealed Ag film coated with GSS 20 nm

    为了更好地解释局域表面等离子体共振现象,文中研究了光谱性质,如图4所示。其中点曲线为退火处理20 nm银膜的透过率曲线,470 nm处出现了一个谷值,表明该结构在470 nm波长处产生了局域表面等离子体共振,产生的散射及热损耗降低了透过率。虚线为只有20 nm厚GSS的透过率曲线。实曲线为退火银结构加20 nm厚GSS的透过率曲线。可以看出,蓝色曲线并非红色和黑色曲线的简单叠加,而是将470 nm处的谷值红移到了660 nm处。此现象符合了局域表面等离子体激元的性质:共振波长随着共振天线周围介质折射率的减小/增加而蓝移/红移[20]。而文中选用的532 nm波长作为Z-scan光源,处在共振波长附近。

    Figure 4.  Transmittance spectra of GSS 20 nm, annealed Ag, and annealed Ag with GSS 20 nm

    此外,还研究了不同GSS膜厚度下,退火银结构对非线性吸收的增强效果。图5为GSS厚度分别为20、40、60、80 nm情况下有无退火银结构的非线性吸收系数。其中,无退火银结构GSS薄膜的非线性吸收系数分别为${\;\beta _{20}} = 3.1 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$${\;\beta _{40}} = 2.9 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$${\;\beta _{60}} = 2.2 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$${\;\beta _{80}} = 2.4 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$;有退火银结构的GSS薄膜非线性吸收系数分别为${\;\beta _{A20}} = 6.3 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$${\;\beta _{A40}} = 5.0 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$${\;\beta _{A60}} = 3.0 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$${\;\beta _{A80}} = 2.3 \times {10^{ - 4}}\;{{\rm{m}} / {\rm{W}}}$。可以得出,随着GSS厚度的增加,退火银结构对GSS薄膜非线性吸收的增强效果逐渐减弱至消失。

    Figure 5.  Nonlinear absorption coefficients with and without annealed Ag for different GSS thickness

  • 文中研究了退火银膜产生的微纳结构对硫系玻璃GSS非线性吸收的增强效果。结果表明,20 nm的退火银结构将20 nm的GSS薄膜的非线性吸收系数增强到了两倍。且通过光谱分析证明,其增强效果来自退火银膜形成微纳结构中产生的局域表面等离子体共振。随着硫系玻璃GSS薄膜厚度从20 nm增加至80 nm,退火银结构对其增强效果逐渐减弱直至消失。该研究用到的LSP微纳结构制作简单,无需复杂光刻工艺,且对硫系玻璃GSS的非线性吸收起到了很好的增强效果,该工作为硫系玻璃光学非线性的增强提供了重要的参考价值,值得深入研究。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return