Volume 49 Issue 12
Dec.  2020
Turn off MathJax
Article Contents

Ji Yanhui, He Yang, Wan Haohua, Sun Junjie, Chen Fei. Research progress on the high power flowing-gas circulation diode-pumped alkali vapor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201080. doi: 10.3788/IRLA20201080
Citation: Ji Yanhui, He Yang, Wan Haohua, Sun Junjie, Chen Fei. Research progress on the high power flowing-gas circulation diode-pumped alkali vapor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201080. doi: 10.3788/IRLA20201080

Research progress on the high power flowing-gas circulation diode-pumped alkali vapor laser (Invited)

doi: 10.3788/IRLA20201080
  • Received Date: 2020-10-18
  • Rev Recd Date: 2020-11-20
  • Available Online: 2021-01-14
  • Publish Date: 2020-12-24
  • Diode pumped alkali metal vapor laser (DPAL) combines the technical characteristics of both diode laser and gas laser, with the advantages of high quantum efficiency, large excited emission cross section, small refractive index perturbation, convenient thermal management and rich output wavelength, which can achieve high efficiency, high power and high beam quality near infrared laser output, and has important applications in industrial manufacturing, military, medical and scientific research fields. For closed static DPAL, under the condition of high power pump, the working gas temperature in the steam pool increases, and the thermal effect is serious, resulting in the decline of DPAL performance. The circulating flow DPAL uses gas flow to take away waste heat, which can significantly alleviate the thermal effect of working gas, so as to achieve high-power laser output. At present, it has become the mainstream technical route to achieve high power laser output. In this paper, the principles and current development of the flowing-gas circulation DPAL are outlined, the obstacles and solutions of high power scaling of DPAL are analysed, and prospects for the future development of high-power alkali metal lasers.
  • [1] Ehrenreich T, Zhdanov B, Takekoshi T, et al. Diode pumped caesium laser [J]. Electronics Letters, 2005, 41(7): 415-416. doi:  10.1049/el:20058388
    [2] Page R H, Beach R J, Kanz V K, et al. First Demonstration of a Diode-Pumped Gas (Alkali Vapor) Laser[C]//Conference on Lasers & Electro-optics, 2005, CMAA1.
    [3] Zhdanov B V, Shaffer M K, Knize R J. Demonstration of a diode pumped continuous wave potassium laser[C]//Spie Lase, 2011, 7915: 791506.
    [4] Zhdanov B V, Knize R J. Hydrocarbon-free potassium laser [J]. Electronics Letters, 2007, 43(19): 1024-1025. doi:  10.1049/el:20071587
    [5] Zweiback J, Komashko A, Krupke W F. Alkali-vapor lasers[C]//Average Power Lasers and Intense Beam Applications IV, 2010, 2010, 7581: 75810G.
    [6] Krupke W F. Diode pumped alkali lasers (DPALs)—A review (rev1) [J]. Progress in Quantum Electronics, 2012, 36(1): 4-28. doi:  10.1016/j.pquantelec.2011.09.001
    [7] Zhdanov B V, Knize R J. Review of alkali laser research and development [J]. Optical Engineering, 2013, 52(2): 021010.
    [8] Gao F, Chen F, Xie J J, et al. Review on diode-pumped alkali vapor laser [J]. Optik - International Journal for Light and Electron Optics, 2013, 124(20): 4353-4358. doi:  10.1016/j.ijleo.2013.01.061
    [9] Pitz G A, Anderson M D. Recent advances in optically pumped alkali lasers [J]. Applied physics reviews, 2017, 4(4): 041101. doi:  10.1063/1.5006913
    [10] Krupke W F. Diode-pumped Alkali laser[P]. 6, 643, 311, 2003.
    [11] Krupke W F, Beach R J, Kanz V K, et al. Resonance transition 795-nm rubidium laser [J]. Optics Letters, 2003, 28(23): 2336-2338. doi:  10.1364/OL.28.002336
    [12] Zhdanov B V, Ehrenreich T, Knize R J. Highly efficient optically pumped cesium vapor laser [J]. Optics Communications, 2006, 260(2): 696-698. doi:  10.1016/j.optcom.2005.11.042
    [13] Hurd E J, Holtgrave J C, Perram G P. Intensity scaling of an optically pumped potassium laser [J]. Optics Communications, 2015, 357: 63-66. doi:  10.1016/j.optcom.2015.08.087
    [14] Zhdanov B V, Shaffer M K, Knize R J. Cs laser with unstable cavity transversely pumped by multiple diode lasers [J]. Optics Express, 2009, 17(17): 14767-14770. doi:  10.1364/OE.17.014767
    [15] Fox C, Perram G. Temperature gradients in diode-pumped alkali lasers[R].Air force Inst of tech wright-patterson afboh school of engineering and management/dept of engineering physics, 2012.
    [16] Zhang W, Wang Y, Cai H, et al. Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes [J]. Applied Optics, 2014, 53(19): 4180-4186. doi:  10.1364/AO.53.004180
    [17] Weeks D E, Lewis C D, Schlie L A, et al. Temperature dependence of the fine structure mixing induced by He−4 and He−3 in K and Rb Diode Pumped Alkali Lasers [J]. Applied Physics B-Lasers and Optics, 2020, 126(5): 1-10.
    [18] Beach R J, Krupke W F, Kanz V K, et al. End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling [J]. Journal of the Optical Society of America B, 2004, 21(12): 2151-2163. doi:  10.1364/JOSAB.21.002151
    [19] Liu Y, Pan B, Yang J, et al. Thermal effects in high-power double diode-end-pumped Cs vapor lasers [J]. IEEE Journal of Quantum Electronics, 2012, 48(4): 485-489. doi:  10.1109/JQE.2012.2185685
    [20] Shaffer M K, Lilly T C, Zhdanov B V, et al. In situ non-perturbative temperature measurement in a Cs alkali laser [J]. Optics Letters, 2015, 40(1): 119-122. doi:  10.1364/OL.40.000119
    [21] Auslender I, Yacoby E, Barmashenko B D, et al. Controlling the beam quality in DPALs by changing the resonator parameters [J]. Applied Physics B, 2020, 126(5): 1-6.
    [22] Petersen A, Lane R. Second harmonic operation of diode-pumped Rb vapor lasers[C]//High-Power Laser Ablation VII, 2008, 7005: 700529.
    [23] Bogachev A V, Garanin S G, Dudov A M, et al. Diode-pumped caesium vapour laserwith closed-cycle laser-active medium circulation [J]. Quantum Electronics, 2012, 42(2): 95-98. doi:  10.1070/QE2012v042n02ABEH014734
    [24] Hostutler D. Characterization of a diode pumped alkali laser with a flowing gain medium[C]//HPLS&A 2016 Conference, 2016: 5-9.
    [25] 任国光, 伊炜伟, 齐予, 等. 美国战区和战略无人机载激光武器[J]. 激光与光电子学进展, 2017, 54(10): 100002.1-100002.8.

    Ren Guoguang, Yi Weiwei, Qi Yu, et al. U.S. theater and strategic UVA-borne laser weapon [J]. Laser&Optoelectronics Progress, 2017, 54(10): 100002.1-100002.8. (in Chinese)
    [26] Zediker M S, Makki S, Faircloth B O, et al. Control system for high power laser drilling workover and completion unit[P]. 9, 027, 668, 2015.
    [27] Xu Yao. Modeling and simulation of Flowing-DPAL[D]. Changsha: National University of Defense Technology: 2013. (in Chinese)
    [28] Shen B, Huang J, Xu X, et al. Modeling of steady-state temperature distribution in diode-pumped Alkali vapor lasers: analysis of the experimental results [J]. IEEE Journal of Quantum Electronics, 2017: 1-7.
    [29] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Measurements of the gain medium temperature in an operating Cs DPAL [J]. Optics Express, 2016, 24(17): 19286-19292. doi:  10.1364/OE.24.019286
    [30] Eyal Y, Ilya A, Karol W, et al. Analysis of continuous wave diode pumped cesium laser with gas circulation: experimental and theoretical studies [J]. Optics Express, 2018, 26(14): 17814-17819. doi:  10.1364/OE.26.017814
    [31] Barmashenko B D, Rosenwaks S. Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers [J]. Journal of the Optical Society of America B, 2013, 30(5): 1118-1126. doi:  10.1364/JOSAB.30.001118
    [32] Barmashenko B D, Rosenwaks S, Waichman K. Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers[C]//Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems. International Society for Optics and Photonics, 2013, 8898: 88980W.
    [33] Barmashenko B D, Rosenwaks S. Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas [J]. Optics Letters, 2012, 37(17): 3615-3617. doi:  10.1364/OL.37.003615
    [34] Barmashenko B D, Rosenwaks S, Waichman K. Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling[C]//Proceedings of Spie the International Society for Optical Engineering, 2014, 8962: 89620C.
    [35] Waichman K, Barmashenko B D, Rosenwaks S. Beam propagation in an inhomogeneous medium of a static gas cesium diode pumped alkali laser: three-dimensional wave optics and fluid dynamics simulation [J]. Journal of the Optical Society of America B Optical Physics, 2018, 35(3): 558-567. doi:  10.1364/JOSAB.35.000558
    [36] Barmashenko B D, Rosenwaks S. Feasibility of supersonic diode pumped alkali lasers: model calculations [J]. Applied Physics Letters, 2013, 102(14): 141108. doi:  10.1063/1.4800650
    [37] Rosenwaks S, Barmashenko B D, Waichman K. Theoretical studies of the feasibility of supersonic DPALs[C]//Spie Security+ Defence, 2014, 9251: 92510W.
    [38] Rosenwaks S, Barmashenko B D, Waichman K. What can we gain from supersonic operation of diode pumped alkali lasers: model calculations[C]//Spie Security+Defence. International Society for Optics and Photonics, 2013, 9251: 92510W.
    [39] Rosenwaks S, Barmashenko B D, Waichman K. Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation[C]//Proceedings of Spie the International Society for Optical Engineering, 2014, 8962: 896209.
    [40] Yacoby E, Waichman K, Sadot O, et al. Flowing-gas diode pumped alkali lasers: theoretical analysis of transonic vs supersonic and subsonic devices [J]. Optics Express, 2016, 24(5): 5469-5477. doi:  10.1364/OE.24.005469
    [41] Barmashenko B D, Auslender I, Yacoby E, et al. Modeling of static and flowing-gas diode pumped alkali lasers[C]//Conference on High Energy/Average Power Lasers and Intense Beam Applications IX, 2016, 9729: 972904.
    [42] Rosenwaks S, Yacoby E, Waichman K, et al. Supersonic diode pumped alkali lasers: Computational fluid dynamics modeling[C]//Technologies for Optical Countermeasures XⅡ and High-Power Lasers 2015: Technology and Systems. International Society for Optics and Photonics, 2015, 9650: 96500A.
    [43] Yacoby E, Waichman K, Sadot O, et al. Modeling of supersonic diode pumped alkali lasers [J]. Journal of the Optical Society of America B-Optical Physics, 2015, 32(9): 1824-1833. doi:  10.1364/JOSAB.32.001824
    [44] Waichman K, Barmashenko B D, Rosenwaks S. CFD DPAL modeling for various schemes of flow configurations[C]//SPIE Security + Defence, 2014. 9251: 92510U.
    [45] Yacoby E, Waichman K, Sadot O, et al. Modeling of flowing-gas diode-pumped potassium laser with different pumping geometries: scaling up and controlling beam quality [J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 1-7.
    [46] Yacoby E, Waichman K, Sadot O, et al. Scaling up and controlling beam quality of flowing-gas diode pumped potassium laser with different pumping geometries: 3D CFD modeling[C]//High Power Lasers: Technology and Systems, Platforms, Effects, 2017, 10436: 104360D.
    [47] Perram G P, Gavrielides A, Schlie L A, et al. Analytic treatment of high power diode pumped lasers with unstable resonator in a flowing medium[C]//Laser Resonators, Microresonators, & Beam Control XX, 2018, 10518: 1051815.
    [48] Gavrielides A, Schlie L A, Loper R D, et al. Analytic treatment of beam quality and power efficiency in a high-power transverse flow diode pumped alkali laser [J]. Journal of the Optical Society of America B, 2018, 35(9): 2202-2210. doi:  10.1364/JOSAB.35.002202
    [49] Endo M, Nagaoka R, Nagaoka H, et al. Wave-optics simulation of diode-pumped cesium vapor laser coupled with a simplified gas-flow model [J]. Japanese Journal of Applied Physics, 2018, 57(9): 092701. doi:  10.7567/JJAP.57.092701
    [50] Endo M, Nagaoka R, Nagaoka H, et al. Modeling of diode-pumped cesium vapor laser by combination of computational fluid dynamics and wave-optics [J]. Japanese Journal of Applied Physics, 2020, 59(2): 022002. doi:  10.7567/1347-4065/ab649f
    [51] Krupke W F, Beach R J, Kanz V K, et al. New class of cw high-power diode-pumped alkali lasers (DPALs)[C]//Presented at: High-Power Laser Ablation, 2004.
    [52] Zweiback J S, Betin A A, Krupke W F. Alkali-vapor laser with transverse pumping[P]. 12/122, 524, 2009.
    [53] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system [J]. Optics Communications, 2015, 354: 256-258. doi:  10.1016/j.optcom.2015.06.010
    [54] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Low pressure cesium and potassium diode pumped alkali lasers: pros and cons [J]. Optical Engineering, 2016, 55(2): 026105. doi:  10.1117/1.OE.55.2.026105
    [55] Knize R J, Zhdanov B V, Rotondaro M D, et al. Experimental study of the Cs diode pumped alkali laser operation with different buffer gases [J]. Optical Engineering, 2016, 55(3): 036109.1-036109.5.
    [56] Knize R J, Zhdanov B V, Rotondaro M T, et al. Operation of static and flowing Cs DPAL with different buffer gas mixtures[C]//Spie Lase, 2016, 9729: 972903..
    [57] Pitz G A, Stalnaker D M, Guild E M, et al. Advancements in flowing diode pumped alkali lasers[C]//High Energy/average Power Lasers & Intense Beam Applications IX, 2016, 9729.
    [58] Yamamoto T, Yamamoto F, Endo M, et al. Experimental investigation of gas flow type DPAL[C]//High Energy/Average Power Lasers and Intense Beam Applications IX, 2017, 10254: 102540S.
    [59] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Examination of potassium diode pumped alkali laser using He, Ar, CH4 and C2H6 as buffer gas [J]. Optics Express, 2017, 25(24): 30793-30798. doi:  10.1364/OE.25.030793
    [60] Yacoby E, Auslender I, Barmashenko B D, et al.Continuous wave diode pumped flowing-gas Cesium Laser[C]. 22nd International Symposium on High Power Laser Systems and Applications (HPLS and A), 2018, 11042: 110420D.
    [61] Yang Z, Wang H, Lu Q, et al. Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser [J]. Journal of Physics B Atomic Molecular & Optical Physics, 2011, 44(8): 085401.
    [62] Yang Z, Wang H, Hua W, et al. Diode-pumped rubidium vapor laser [J]. High Power Laser and Particle Beams, 2011, 23(9): 2273-2274. doi:  10.3788/HPLPB20112309.2273
    [63] Yang Z, Wang H, Lu Q, et al. Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium [J]. Journal of the Optical Society of America B, 2011, 28(6): 1353-1364. doi:  10.1364/JOSAB.28.001353
    [64] Yang Z, Wang H, Lu Q, et al. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission [J]. Optics Express, 2011, 19(23): 23118-23131. doi:  10.1364/OE.19.023118
    [65] Han J, You W, An G, et al. Investigation of physical features of both static and flowing-gas diode-pumped rubidium vapor lasers[C]//Proceedings of Spie the International Society for Optical Engineering, 2014, 9266: 92660P.
    [66] Han J, Wang Y, Cai H, et al. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I [J]. Optics Express, 2014, 22(11): 13988-14003. doi:  10.1364/OE.22.013988
    [67] Han J, Wang Y, Cai H, et al. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part Ⅱ) [J]. Optics Express, 2015, 23(7): 9508-9515. doi:  10.1364/OE.23.009508
    [68] Qi Z, Pan B, Li C, et al. Analysis of temperature distributions in diode-pumped alkali vapor lasers [J]. Optics Communications, 2010, 283(11): 2406-2410. doi:  10.1016/j.optcom.2010.02.014
    [69] Shen B, Pan B, Jiao J, et al. Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers [J]. Optics Express, 2015, 23(15): 19500-19511. doi:  10.1364/OE.23.019500
    [70] Shen B, Xu X, Xia C, et al. Computation of three-dimensional temperature distribution in diode-pumped alkali vapor amplifiers [J]. Optics Communications, 2016, 368: 43-48. doi:  10.1016/j.optcom.2016.01.084
    [71] Shen B, Xu X, Xia C, et al. Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers [J]. Optics Communications, 2016, 380: 28-34. doi:  10.1016/j.optcom.2016.05.086
    [72] Xu X, Shen B, Huang J, et al. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow [J]. Journal of Applied Physics, 2017, 122(2): 2151-2163.
    [73] Xu X, Shen B, Xia C, et al. Modeling of kinetic and thermodynamic processes in a flowing exciplex pumped alkali vapor laser [J]. IEEE Journal of Quantum Electronics, 2017, 53(2): 1-7. doi:  10.1109/JQE.2017.2683781
    [74] Xia C, Shen B, Xu X, et al. Modeling of a diode four-side pumped cesium vapor laser amplifier with flowing medium [J]. Applied Physics B, 2017, 123(3): 75. doi:  10.1007/s00340-017-6657-3
    [75] Xia C, Xu X, Huang J, et al. Influences of operating parameters on deleterious processes of side-pumped cesium vapor laser amplifiers with flowing medium [J]. Journal of Applied Physics, 2018, 124(5): 053102. doi:  10.1063/1.5035182
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)  / Tables(2)

Article Metrics

Article views(838) PDF downloads(90) Cited by()

Related
Proportional views

Research progress on the high power flowing-gas circulation diode-pumped alkali vapor laser (Invited)

doi: 10.3788/IRLA20201080
  • 1. State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Diode pumped alkali metal vapor laser (DPAL) combines the technical characteristics of both diode laser and gas laser, with the advantages of high quantum efficiency, large excited emission cross section, small refractive index perturbation, convenient thermal management and rich output wavelength, which can achieve high efficiency, high power and high beam quality near infrared laser output, and has important applications in industrial manufacturing, military, medical and scientific research fields. For closed static DPAL, under the condition of high power pump, the working gas temperature in the steam pool increases, and the thermal effect is serious, resulting in the decline of DPAL performance. The circulating flow DPAL uses gas flow to take away waste heat, which can significantly alleviate the thermal effect of working gas, so as to achieve high-power laser output. At present, it has become the mainstream technical route to achieve high power laser output. In this paper, the principles and current development of the flowing-gas circulation DPAL are outlined, the obstacles and solutions of high power scaling of DPAL are analysed, and prospects for the future development of high-power alkali metal lasers.

    • 半导体泵浦碱金属蒸汽激光器(Diode pumped alkali vapor laser, DPAL)是一种由半导体激光器(LD)泵浦K (钾)、Rb (铷)、Cs (铯)等碱金属蒸汽的近红外气体激光器[1-4]。DPAL兼具固体和气体激光器的优势,具有量子效率高、光束质量好、结构紧凑、吸收截面大和热管理便捷等优点,有望发展成为新一代高能激光光源[5-9]

      2001年,美国利弗莫尔劳伦斯实验室的Krupke首次提出半导体泵浦碱金属激光器的概念以及设计方案[10],随后于2003年完成其方案演示[11]。2005年,美国空军学院Ehrenreich首次实现半导体泵浦Cs蒸汽激光器的成功运转[1]。2006年,在脉冲泵浦Cs蒸汽的条件下,达到81%的斜效率(光光效率63%)[12]。2015年,美国空军理工学院Hurd 等利用脉冲泵浦无烃K蒸汽激光器的方案,实现光强为7 MW/cm2的激光输出[13]

      但上述DPAL均属于封闭静止型,尽管已实现较高的功率与光光转换效率,但随着泵浦功率的增大,蒸汽池内工作气体温度随之升高,阻碍了封闭静止型DPAL高效运行以及向着更高输出功率发展的目标。从实验[14-15]和理论上[16-17]可以看出,DPAL中的这种温度升高会导致斜效率以及光光效率降低;此外,高功率泵浦会带来过大的热效应,从而引起蒸汽池内气体折射率的改变[18-19]以及温度的不均匀分布[20-21],直接影响激光输出特性并降低激光光束质量,然而单纯的传导冷却难以实现有效的热管理[5, 22]

      为实现DPAL的高功率输出,需将废热从蒸汽池中移出,以此来减轻热效应对激光器造成的负面影响,而循环流动型DPAL可利用新旧气体交换,有效解决散热问题。2012年,俄罗斯联邦核子中心Bogachev课题组报道了双端面泵浦循环流动型Cs蒸汽DPAL (Cs-DPAL),在泵浦光功率为 2 kW时实现了最高功率为1 kW 的Cs蒸汽激光输出[23]。这是 DPAL 迈向高功率输出的一个重要里程碑。随后,美国空军实验室的Hostutler利用循环流动型K-DPAL,实现1.9 kW的激光输出[24]。2015年,美国利弗莫尔劳伦斯实验室使循环流动型DPAL输出功率达到13 kW,这是DPAL公开报道的最高输出功率[25-26]

      可见,循环流动DPAL发挥了气体增益介质易于热管理的优势,是实现高功率激光输出的重要手段。循环流动型DPAL在工业加工、国防军事等方面有着广阔的应用前景,因此开展循环流动型DPAL的研究具有重要意义[27]。文中对循环流动型DPAL的工作原理,发展现状进行概述与分析,并对循环流动型DPAL的发展趋势进行展望。

    • DPAL的增益介质为K、Rb、Cs等碱金属蒸汽,最外层只有一个电子,具有如图1中所示的三能级结构。n2S1/2为基态能级,n2P3/2n2P1/2是由电子自旋-轨道相互作用产生的激发态能级(K、Rb、Cs分别对应n=4、5、6)。碱金属原子吸收能量为Ep=D2的泵浦光子从基态能级n2S1/2向泵浦上能级n2P3/2 的跃迁为泵浦过程(D2线);在能量为EL=D1的光子激励下,碱金属原子从n2P1/2n2S1/2的跃迁为激射过程(D1线);碱金属原子从泵浦上能级n2P3/2到激光上能级n2P1/2的跃迁过程为精细能级结构弛豫过程,充入适当缓冲气体(He或少量烷烃气体)可显著提高碰撞弛豫速率。

      Figure 1.  pump energy level transition diagram

      表1列出了碱金属原子的泵浦、激光发射波长、精细能级间隔以及量子亏损值。由此可见,碱金属原子n2P1/2n2P3/2能级之间的能级差ΔE极小,即量子亏损非常小,可以达到接近100%的量子效率。这代表每一个碱金属原子受泵浦光子激发时产生的废热少,因此理论上DPAL仅产生极少的废热[27]

      AtomPump wavelength/nmLasing wavelength/nmΔE/cm−1Quantum efficiency (ED1/ED2
      K766.70770.1157.70.44%
      Rb780.25794.98237.51.9%
      Cs852.35894.59554.14.7%

      Table 1.  Reference data for different alkali lasers

      尽管碱金属激光器的量子效率很高,但在高泵浦功率情况下,精细能级弛豫以及淬灭等过程会导致蒸汽池内热量积累[28-30],减少泵浦吸收,进而导致激光的输出功率和效率的降低,此外,在高功率泵浦情况下,通过泵浦和激光辐射以及蒸汽池内气体碰撞,碱金属原子被激发到更高的能级n2D3/2,5/2和(n+2)2S1/2,这些能级的光致电离和潘宁电离导致参与激光的中性碱金属原子密度降低,从而降低泵浦吸收和增益。高温下碱金属蒸汽与烷烃气体反应也会导致碱金属浓度的下降,反应物还会引起窗口污染。温度的升高和碱金属原子的损失都会降低DPAL的效率和功率。另一方面,DPAL蒸汽池中工作气体的自然对流可缓解热效应,它是由温度和气体密度的不均匀分别引起的,对流增加了从激光区到池壁的传热和碱金属原子从池壁到激光区的扩散速率[31-32]。然而自然对流现象减轻DPAL热效应的效果并不明显。

      使DPAL内的工作气体循环流动可有效解决这一问题。气体在蒸汽池中的循环流动可以及时用新气体替换旧气体,增强了与池外的热量传递,阻碍了工作气体温度的上升,去除可能的反应产物以及提供用于窗口吹扫的气体,从而保障DPAL具有较高的功率和效率。典型循环流动型DPAL的流动装置如图2所示:包括气体鼓风机、碱金属蒸汽池、碱金属储气池、压力传感器、真空泵、缓冲气体池和连接管道。缓冲气体池和真空泵用于调控缓冲气体气压,它既可向管道内添加新的缓冲气体,也可由真空泵向外抽出部分工作气体。碱金属储气室是碱金属蒸汽源,其温度比蒸汽池及连接管道低,以缓解碱金属蒸汽在其他部位的沉积。气体鼓风机使气体混合物以设定速度循环流动,带走碱金属蒸汽中产生的废热,使循环流动型DPAL实现高效率、高功率激光输出。

      Figure 2.  Schematic of the flowing gas circulation DPAL

    • 为研究循环流动型DPAL实现高功率激光输出的可行性,以色列古里安大学、美国空军技术学院、日本东海大学等研究机构对循环流动型DPAL进行理论建模,并开展仿真分析。

      2012年,以色列古里安大学Barmashenko等在不考虑碱金属原子电子态淬灭、电离以及更高能级跃迁的情况下,建立了一个简化的半解析流动DPAL模型[33],该模型模拟了气体流动和输出激光关系[31-32]。研究结果表明半解析模型对激光区不同物质密度和温度均匀分布的假设是不准确的,因此该课题组进一步提出二维/三维计算流体力学模型(2D/3D-CFD)[32, 34-35]。对于低泵浦功率,两个模型预测的激光功率非常接近;然而,在泵浦功率较高时,采用2D/3D-CFD模型计算的激光功率远高于采用半解析模型计算的激光功率。该课题组用两种模型对气体流速、缓冲气体成分、泵浦方式、流动方式等参数对输出激光性能的影响进行理论分析,研究结果如表2所示,发现气体流动方式、泵浦方式和缓冲气体成分对循环流动型DPAL的输出性能影响显著。

      2013年,该课题组首次提出超音速DPAL模型[36],如图3所示,采用端面泵浦和气体横向流动的方式,碱金属原子和缓冲气体的混合气体从高温高压气池经过喷管加速至 2~3 马赫,喷射到压强为几个atm 的低压增益区以降低混合气体温度,减小n2P3/2状态下的粒子数密度和碱金属气体与烷烃反应速率,得到有利于泵浦吸收的温度和碱金属原子浓度。发现对于长期连续运行的超音速DPAL,为节约气体,需采用循环运行方式[37],如图4超音速闭合循环装置的原理图。随后对比K-DPAL和Cs-DPAL在超音速、亚音速以及跨音速情况下的输出性能[38-41],发现超音速优于跨音速,跨音速优于亚音速,同时在超音速情况下,K-DPAL的最大输出功率高于超音速Cs-DPAL [42-43]。为了实现高压高速的气体流动,需采用超高功率机械泵,这是超音速循环流动型DPAL实现长期连续运行的关键。

      时间研究者技术路线结论分析
      2013年Barmashenko利用简化的半解析模型,模拟激光流动以及
      激光输出,研究气体流动对激光性能的影响[31-32]
      在高泵浦功率条件下,适当流速可缓解温度的升高;并且
      流速较大时,高能态激发以及电离产生较小影响。(见图5
      2013年Barmashenko检验使用高摩尔热容和大弛豫速率常数的缓冲
      气体对循环流动型DPAL输出功率的影响[31-32]
      相比于乙烷(C2H6),用丙烷(C3H8
      作为缓冲气体可实现更高功率激光输出。
      2014年Waichman利用3D-CFD模型,分析垂直于泵浦和激光
      的横向气体流动方式对激光性能影响[44]
      发现横向流动方式可明显改善光束质量。
      使高泵浦功率下的输出功率提高30%。
      2017年Eyal Yacoby利用3D-CFD动力学模型对不同泵浦方式的流动K蒸汽
      DPAL(K-DPAL)性能以及光束质量进行分析[45-46]
      输出功率几乎不受泵浦方式的影响,但是
      输出激光光束的空间强度分布取决于泵浦方式。

      Table 2.  Barmashenko's group on theoretical study of flowing alkali metal vapor lasers

      Figure 3.  Schematic of the supersonic DPAL

      Figure 4.  Schematic of the flowing-gas circulation supersonic DPAL

      2018年,美国空军技术学院[47-48] Gavrielides等系统地研究了流动方式对远场光束质量的影响,研究结果表明,在气体横向流动情况下,循环流动型DPAL的光束质量相对轴向流动情况下的更好,该结论与古里安大学结论一致。该课题组进一步分析了横向流动型100 kW级 Rb蒸汽(Rb-DPAL)的输出特性,结果表明,在气体流速约20 m/s情况下,碱金属蒸汽的温度梯度得到了有效控制,循环流动Rb-DPAL的光光效率可达80%。

      2018年,日本东海大学Endo等采用波动光学谐振腔模型简化气体流动情况下的热透镜效应,对循环流动型DPAL进行了数值模拟[49]。该模型正确地预测了增益介质的温度分布,而且计算值与实验值吻合较好,但仅适用于强制流动DPAL。2020年,该课题组提出了不可压缩的3D-CFD模型[50]。用修正的Boussinesq近似模拟了自然对流流动,模型可准确计算出DPAL的流场分布,并且与实验结果十分吻合。

    • 美国、俄罗斯和日本等国家的科研机构开展了循环流动型DPAL的实验研究,其中,俄罗斯联邦核子中心、美国空军研究实验室以及美国利弗莫尔劳伦斯实验室公开报道了kW级高功率循环流动型DPAL。日本东海大学、美国空军学院也成功实现循环流动型DPAL激光输出。

      2004年,美国利弗莫尔劳伦斯实验室首次提出流动DPAL的设计构想 [51]。如图5所示,该流动DPAL的设计参数如下:初始温度为410 K,腔内压强为20 atm,增益介质的流速为30 m/s,在泵浦光强度为 37 kW/cm2的条件下,可实现55.8%的光光效率碱金属蒸汽的温升仅为9 K。较封闭静止DPAL 而言,该系统温升大幅下降,但其需要的高压环境,在工程上较难实现。

      2009 年,Krupke申请气体横向流动的循环流动型DPAL专利 [52],该气体流动方式实现了流动气体、泵浦光与激光的分离。为了将DPAL输出功率扩大到兆瓦量级,采用流动冷却结构,并进行了2 MW端泵轴向流DPAL的概念设计[51]

      Figure 5.  Schematic diagram of DPAL with flowing gain medium

      2010 年7月,美国空军实验室用横向泵浦的方式首次成功实现了循环流动 DPAL的运转,并将其命名为 FDPAL(flowing DPAL),如图6所示,这标志着 DPAL 朝高功率输出方向又迈出了关键的一步。

      Figure 6.  First light from flowing DPAL

      2012年,俄罗斯联邦核子中心首次报道了kW级循环流动-DPAL[23],这是DPAL向高功率发展的重要里程碑。其实验装置如图7所示,增益介质为Cs蒸汽,缓冲气体为He和CH4,气体流速为~20 m/s,采用双端泵浦方式,获得~1 kW的895 nm激光输出,光光转换效率约为48%。由于碱金属蒸汽与缓冲气体反应会污染蒸汽池窗口,因此窗口需要及时清洗,除了使用非反应反射涂层外,使用碱基清洗剂也是必要的[9]

      Figure 7.  Schematic diagram of a diode-pumped caesium vapour laser

      2013年,美国利弗莫尔劳伦斯实验室首次实现数kW级循环流动型DPAL激光输出,通过增加蒸汽池尺寸、改进光学元件、光学涂层以及蒸汽池窗口,使循环流动型DPAL输出功率达到4 kW,2015年,该课题组对工作气体温度进行有效控制,实现13 kW的激光输出,是DPAL公开报道的最高激光输出功[25-26]

      同年,美国空军学院实验室Zhdanov课题组首次实现循环流动型K-DPAL激光输出[53]。采用图2所示实验装置, 循环流动系统包括磁驱动气体鼓风机、碱金属蒸汽的储气池、填充以及排出蒸汽的气体处理系统、蒸汽池等。所有系统元件和连接管均由耐碱的不锈钢制成。蒸汽池有4个窗口,其两侧均具有耐碱抗反射涂层,可用于端面和侧面泵浦。采用图8所示的端面泵浦方式,气体流向垂直于激光轴和泵浦轴,可减少增益区域中的湍流,缓冲气体压强为800 torr,流速为6.6 m/s,碱金属蒸汽池温度为180 ℃,在泵浦功率40 W情况下,激光最高输出功率为5 W,斜效率为31%。

      Figure 8.  Experimental device diagram of L-shaped end pumping method

      2016年,该课题组继续探索气体流速对循环流动型DPAL功率的影响。在蒸汽池内气体压强较低情况下,对比有无气体流动时Cs-DPAL与K-DPAL的输出功率[54],实验结果表明,气体流速越大,DPAL峰值功率和连续功率均随之增大,且功率随时间增加的衰减越小。如图9所示,当气体流速从0增加到6 m/s时,K-DPAL输出功率的衰减从60%下降到40%。对于Cs-DPAL,这种差异从1 m/s时的20%下降到4 m/s时的3%。这表明,在连续波模式下,较高的气体流速能及时缓解气体热效应,抑制激光功率的下降趋势。即使是在模式匹配不完美的情况下,气体流动时的K-DPAL斜率效率仍较气体静止时高30%。

      Figure 9.  Time dependence of the K (a) and Cs (b) DPALs output powers for different flow rates

      此外,Zhdanov和Knize比较了K-DPAL和Cs-DPAL的性能。与K-DPAL相比,Cs-DPAL系统具有更高的增益和更低的阈值。然而,Cs-DPAL需要烷烃作为缓冲气体,其在较高温度下易与Cs发生化学反应,从而降低Cs-DPAL输出性能。而K-DPAL可以在无烃情况下实现激光输出。但K-DPAL由于其相对较低的增益而需要较高的泵浦强度,这可能会使气体产生较强的热效应。而采用高速循环流动方式可以缓解热效应的影响,因此循环流动K-DPAL有望和Cs-DPAL一样实现高功率、高效率激光输出。

      同年,该课题组研究了使用甲烷(CH4),C2H6作为缓冲气体对流动Cs-DPAL性能影响[55-56]。研究结果表明,在气体压强较低情况下,C2H6比CH4能够实现更高功率的激光输出。

      2016年,美国空军研究实验室Pitz等报道了实现kW量级激光输出的循环流动K-DPAL[57]。蒸汽池结构如图10所示,采用DILAS公司的光纤耦合窄线宽LD作为泵浦源,泵浦光线宽仅为~0.06 nm,可实现~3 kW的泵浦光输出,采用侧面泵浦方式。工作气体沿黄线所示方向流动,流速大于8 m/s,在 3.1 kW功率泵浦情况下,实现了1.5 kW激光输出,斜效率为50%,光光效率为 48%。随后该实验室通过改变其性能参数,实现1.9 kW的K蒸汽激光输出[24]。此外,利用图11双头流动碱金属蒸汽实验装置,分别将Cs、Rb蒸汽导入两个碱金属蒸汽池,用线宽为0.2 nm,功率分别为1.2 kW、700 W的两个LD泵浦,最终实现795 nm和895 nm的激光同时输出,而且输出功率超过250 W。

      Figure 10.  Air Force Research Laboratory DPAL laser head with helium purged windows (red) and main alkali flow (yellow)

      Figure 11.  Rb-Cs multi-alkali multi-line laser

      2017年,日本东海大学Yamamoto等人,用图12所示实验装置开展循环流动Cs-DPAL研究[58]。首先在理论上利用CFD以及Fox-Li方法分析流动气体对循环流动Cs-DPAL输出性能的影响,仿真结果表明横向流动Cs-DPAL的光束质量比轴向流动的好。在随后的实验中,采用横向泵浦的方式,分别以氦气(He)以及氩气(Ar)作为缓冲气体,测量不同气体流速情况下Cs-DPAL的输出功率,实验结果表明,以He气为缓冲气体时,输出功率与气体流速几乎无关,而以Ar为缓冲气体时,输出功率随着流速的增加而增大,当气体流速≥6 m/s时,与加入He的输出功率接近。其中以Ar为缓冲气体的最大输出功率为9.2 W,光光转化效率为41%;以He为缓冲气体的最大输出功率为9.8 W,光光转化效率为48%。

      Figure 12.  Experimental device diagram of flowing-gas circulation Cs-DPAL

      2017年,美国空军学院研究了用He,Ar,CH4,C2H6和He,CH4混合气体作为缓冲气体的K-DPAL的性能[59]。纯烷烃气体虽然有助于碱金属原子的精细结构能级弛豫,但它的损耗更高,这归因于从n2P3/2态到基态的猝灭。虽然K-DPAL可以在仅有He作为缓冲气体时工作,但He会增加碱金属原子电离几率,降低了中性碱金属原子的粒子数,只有流速约为100 m/s时才可抑制电离,使K-DPAL高效输出,因此纯He不宜用作高功率循环流动型DPAL的缓冲气体。理想的缓冲气体成分是He与烷烃类气体的混合物,可以使吸收线的形状变宽,显著减少激发的上能级粒子数分布,从而减少电离,并且可将流动速度要求降低几个数量级,大大简化K-DPAL循环流动系统的设计,为进一步开展更高功率循环流动K-DPAL的研究奠定基础。同时,实验结果证明纯Ar是循环流动K-DPAL缓冲气体的次优选择。

      2018年以色列古里安大学Yacoby等人进行循环流动型Cs-DPAL实验研究[30, 60],以He和CH4作为缓冲气体,在气体流速为1-4 m/s,泵浦功率为65 W的情况下,获得最大功率24 W的连续激光输出,斜效率为48%。

    • 2009年国防科学技术大学开始进行 DPAL 研究[27, 61],2011年在国内首次实现Rb-DPAL激光输出[62]。同年杨子宁、王红岩等建立了横向泵浦循环流动型DPAL 理论模型,提出了1 MW 流动DPAL 概念设计,获得了激光光光效率大于60%,输出功率 1.2 MW 的理论预测,初步验证了横向泵浦兆瓦级循环流动型DPAL 实现的可行性[63-64]

      2014年,西南技术物理研究所韩聚洪、王浟等建立了一个可同时考虑激光动力学、传热和流体动力学的循环流动型DPAL理论模型[65]。研究了Rb-DPAL中不同流速下蒸汽池横截面的温度分布。仿真结果表明,采用流动气体装置可以显著地降低工作气体温度梯度,特别是对于高功率泵浦情况下。混合气体在蒸汽池中的流动也可以改善Rb-DPAL的输出性能。随后将传热过程与激光动力学过程相结合,建立了Cs蒸汽池横截面径向温度分布的理论模型[66],并指出这种温度分布将不可避免地导致热透镜效应并降低光束质量。2015年,该课题组进一步研究循环流动型DPAL的特性[67],得到了不同气体流速下的热特性和输出特性,从计算结果可以看出,流动气体法可以有效地消除温度梯度,提高输出功率。

      浙江大学也对循环流动 DPAL 蒸汽池内的温度分布进行了详细分析[19, 68],2015年,沈炳林、潘佰良等考虑到温度、放大自发辐射、饱和功率、碱原子对高电子能级的激发和电离等因素的影响,建立了循环流动型DPAL输出特性的物理模型[69]。随后考虑气体分布不均匀的情况优化模型[70]。模拟分析了气体流速对径向和轴向温度分布的影响,结果表明,以足够高的速度流动增益介质可以显著地减少气体增益介质中的热问题。同年,提出两种新型循环流动型DPAL泵浦方式,如图13所示:半环和梯形LD侧面泵浦结构[71],计算了半环、梯形、单面和双面泵浦结构的激光功率与泵浦功率和流动速度的关系,证明了半环和梯形LD侧面泵浦结构的优越性。

      Figure 13.  The schematic diagrams of the semi-ring (a) and trapezoid (b) LD side-pumped alkali vapor lasers

      2017年徐兴齐,沈炳林等建立了超高功率流动准分子泵浦碱蒸汽激光器(XPAL)物理模型[72-73],分析了腔内不同流速下的二维、三维温度分布和激光强度,并比较了亚音速和超音速情况下XPAL的输出特性,发现超音速流动能达到比亚音速流动更高的光光转换效率和更好的热管理。夏春生、沈炳林考虑流体动力学过程、饱和效应和放大自发辐射(ASE),建立了半导体四端对称泵浦以及侧面泵浦流动Cs蒸汽激光放大器(Cs-DPAA)输出特性的理论模型[74-75],研究了泵浦功率、种子激光功率、流动速度以及蒸汽池长度等因对Cs-DPAA输出性能的影响。

    • 十几年来,各国研究人员不断探索研究循环流动型DPAL,并已取得显著成果。实验方面成功实现万瓦量级激光输出。理论方面提出3D-CFD (三维光场-流场耦合)模型,与实验结果拟合较好。但若要进一步提升循环流动型DPAL的吸收和转化效率,实现高效率、高功率和高光束质量的激光输出,还需进一步优化其理论模型和实验方案。通过以下几种技术路线有望实现更高功率的激光输出。

      在理论方面需进一步完善现有的三维光场-流场耦合模型,考虑蒸汽池内气体不均匀以及湍流等因素对折射率空间分布以及光束质量的影响,设计可实现更高功率、高光束质量输出的循环流动型DPAL。

      在实验方面可进行如下优化:

      1、优化泵浦方式,通过均匀泵浦使蒸汽池内工作气体密度及折射率均匀分布;

      2、优化气体流道结构和气体流速,在减缓湍流的同时使气体温度梯度和光学相位变化最小化;

      3、设计具有高菲涅耳数和高输出耦合的非稳腔来获得优良的光束质量;

      4、优化缓冲气体配比及气压:一方面使碱金属蒸汽吸收谱与泵浦源发射谱相匹配,另一方面提高碱金属原子精细结构弛豫速率,进而提高泵浦吸收效率和激光输出功率。

Reference (75)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return