Volume 49 Issue 1
Jan.  2020
Turn off MathJax
Article Contents

Yang Qi, Shen Jun, Wei Xingzhan, Shi Haofei. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 0103003-0103003(23). doi: 10.3788/IRLA202049.0103003
Citation: Yang Qi, Shen Jun, Wei Xingzhan, Shi Haofei. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 0103003-0103003(23). doi: 10.3788/IRLA202049.0103003

Recent progress on the mechanism and device structure of graphene-based infrared detectors

doi: 10.3788/IRLA202049.0103003
  • Received Date: 2019-10-11
  • Rev Recd Date: 2019-11-21
  • Publish Date: 2020-01-28
  • Graphene has some unique properties, such as ultra-high carrier mobility, zero band gap, broadband response, which make it a promising material in infrared photodetection. In this review, the development history of graphene-based infrared detectors was analyzed, and the mechanism of relevant photoelectric response was summarized. The responsivity, wave-band, response speed and device structure were sorted out. The challenges of material preparation and process compatibility of graphene-based detectors were also discussed and prospected.
  • [1] Park J, Ahn Y H, Ruiz-Vargas C. Imaging of photocurrent generation and collection in single-layer graphene[J]. Nano Letters, 2009, 9(5):1742-1746.
    [2] Xia F N, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3):1039-1044.
    [3] Xia F, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12):839-843.
    [4] Ryzhii V, Ryzhii M. Graphene bilayer field-effect phototransistor for terahertz and infrared detection[J]. Physical Review B, 2009, 79(24):245311.
    [5] Bao W, Jing L, Velasco J, Jr, et al. Stacking-dependent band gap and quantum transport in trilayer graphene[J]. Nature Physics, 2011, 7(12):948-952.
    [6] Sonde S, Giannazzo F, Raineri V, et al. Electrical properties of the graphene/4H-SiC (0001) interface probed by scanning current spectroscopy[J]. Physical Review B, 2009, 80(24):241406.
    [7] Xie C, Wang Y, Zhang Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19:41-83.
    [8] Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene-CMOS integration[J]. Nature Photonics, 2017, 11(6):366-371.
    [9] Xia F, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3):1039-1044.
    [10] Drain C M, Christensen B, Mauzerall D. Photogating of ionic currents across a lipid bilayer[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18):6959-6962.
    [11] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6):363-368.
    [12] Fang H, Hu W. Photogating in low dimensional photodetectors[J]. Advanced Science, 2017, 4(12):1700323.
    [13] Guo X, Wang W, Nan H, et al. High-performance graphene photodetector using interfacial gating[J]. Optica, 2016, 3(10):1066-1070.
    [14] Lemme M C, Koppens F H L, Falk A L, et al. Gate-activated photoresponse in a graphene p-n junction[J]. Nano Letters, 2011, 11(10):4134-4137.
    [15] Xu X, Gabor N M, Alden J S, et al. Photo-thermoelectric effect at a graphene interface junction[J]. Nano Letters, 2010, 10(2):562-566.
    [16] Gabor N M, Song J C W, Ma Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene[J]. Science, 2011, 334(6056):648-652.
    [17] Song J C W, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in graphene[J]. Nano Letters, 2011, 11(11):4688-4692.
    [18] Sun D, Aivazian G, Jones A M, et al. Ultrafast hot-carrier-dominated photocurrent in graphene[J]. Nature Nanotechnology, 2012, 7(2):114-118.
    [19] Rogalski A, Kopytko M, Martyniuk P. Two-dimensional infrared and terahertz detectors:Outlook and status[J]. Applied Physics Reviews, 2019, 6(2):021316.
    [20] Piscanec S, Lazzeri M, Mauri F, et al. Kohn anomalies and electron-phonon interactions in graphite[J]. Physical Review Letters, 2004, 93(18):185503.
    [21] Lazzeri M, Piscanec S, Mauri F, et al. Electron transport and hot phonons in carbon nanotubes[J]. Physical Review Letters, 2005, 95(23):236802.
    [22] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2):1086-1101.
    [23] Bistritzer R, MacDonald A H. Electronic cooling in graphene[J]. Physical Review Letters, 2009, 102(20):206410.
    [24] Tse W K, Das Sarma S. Energy relaxation of hot dirac fermions in graphene[J]. Physical Review B, 2009, 79(23):235406.
    [25] Song J C W, Reizer M Y, Levitov L S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene[J]. Physical Review Letters, 2012, 109(10):106602.
    [26] Graham M W, Shi S F, Ralph D C, et al. Photocurrent measurements of supercollision cooling in graphene[J]. Nature Physics, 2013, 9(2):103-108.
    [27] Betz A C, Jhang S H, Pallecchi E, et al. Supercollision cooling in undoped graphene[J]. Nature Physics, 2013, 9(2):109-112.
    [28] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1):109-162.
    [29] Koppens F H, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10):780-793.
    [30] Xia F, Yan H, Avouris P. The interaction of light and graphene:Basics, devices, and applications[J]. Proceedings of the IEEE, 2013, 101(7):1717-1731.
    [31] Tissot J L, Trouilleau C, Fieque B, et al. Uncooled microbolometer detector:Recent developments at ulis[J]. Opto-Electronics Review, 2006, 14(1):25-32.
    [32] Soref R A. Silicon-based optoelectronics[J]. Proceedings of the IEEE, 1993, 81(12):1687-1706.
    [33] Richards P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1):1-24.
    [34] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photo-detectors[J]. Nature Photonics, 2013, 7(11):888-891.
    [35] Voisin C, Placais B. Hot carriers in graphene preface[J]. Journal of Physics-Condensed Matter, 2015, 27(16):160301.
    [36] Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene[J]. Nature Communications, 2013, 4:1987.
    [37] Breusing M, Kuehn S, Winzer T, et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer[J]. Physical Review B, 2011, 83(15):153410.
    [38] Rodriguez-Nieva J F, Dresselhaus M S, Levitov L S. Thermionic emission and negative dI/dV in photoactive graphene heterostructures[J]. Nano Letters, 2015, 15(3):1451-1456.
    [39] Liang S J, Ang L K. Electron thermionic emission from graphene and a thermionic energy converter[J]. Physical Review Applied, 2015, 3(1):014002.
    [40] Massicotte M, Schmidt P, Vialla F, et al. Photo-thermionic effect in vertical graphene heterostructures[J]. Nature Communications, 2016, 7:12174.
    [41] Kim R, Perebeinos V, Avouris P. Relaxation of optically excited carriers in graphene[J]. Physical Review B, 2011, 84(7):075449.
    [42] Freitag M, Low T, Xia F, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 2013, 7(1):53-59.
    [43] Freitag M, Low T, Avouris P. Increased responsivity of suspended graphene photodetectors[J]. Nano Letters, 2013, 13(4):1644-1648.
    [44] Yan J, Kim M H, Elle J A, et al. Dual-gated bilayer graphene hot-electron bolometer[J]. Nature Nanotechnology, 2012, 7(7):472-478.
    [45] Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector[J]. Nano Letters, 2012, 12(6):2773-2777.
    [46] Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7(11):892-896.
    [47] Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11):883-887.
    [48] Lee I H, Yoo D, Avouris P, et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy[J]. Nature Nanotechnology, 2019, 14(4):313-319.
    [49] Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 2017, 11(10):9854-9862.
    [50] Sun T, Wang Y, Yu W, et al. Flexible broadband graphene photodetectors enhanced by plasmonic Cu3-xP colloidal nanocrystals[J]. Small, 2017, 13(42):UNSP 1701881.
    [51] Zhao B, Zhao J M, Zhang Z M. Enhancement of near-infrared absorption in graphene with metal gratings[J]. Applied Physics Letters, 2014, 105(3):031905.
    [52] Yao Y, Shankar R, Rauter P, et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection[J]. Nano Letters, 2014, 14(7):3749-3754.
    [53] Fang Z, Liu Z, Wang Y, et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 2012, 12(7):3808-3813.
    [54] Azar N S, Shrestha V R, Crozier K B. Bull's eye grating integrated with optical nanoantennas for plasmonic enhancement of graphene long-wave infrared photodetectors[J]. Applied Physics Letters, 2019, 114(9):091108.
    [55] Zhang Y, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4:1811.
    [56] Liu Y, Gong T, Zheng Y, et al. Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry[J]. Nanoscale, 2018, 10(42):20013-20019.
    [57] Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7:11954.
    [58] Chen Z, Li X, Wang J, et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity[J]. ACS Nano, 2017, 11(1):430-437.
    [59] Sassi U, Parret R, Nanot S, et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance[J]. Nature Communications, 2017, 8:14311.
    [60] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5):297-301.
    [61] Urich A, Unterrainer K, Mueller T. Intrinsic response time of graphene photodetectors[J]. Nano Letters, 2011, 11(7):2804-2808.
    [62] Schuler S, Schall D, Neumaier D, et al. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector[J]. Nano Letters, 2016, 16(11):7107-7112.
    [63] Schall D, Porschatis C, Otto M, et al. Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line[J]. Journal of Physics D-Applied Physics, 2017, 50(12):124004.
    [64] Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7):532-535.
    [65] Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 2014, 9(4):273-278.
    [66] Herring P K, Hsu A L, Gabor N M, et al. Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple[J]. Nano Letters, 2014, 14(2):901-907.
    [67] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6):363-368.
    [68] Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature Nanotechnology, 2013, 8(11):826-830.
    [69] Guo N, Hu W, Jiang T, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35):16065-16072.
    [70] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10):865-871.
    [71] Qin H, Sun J, Liang S, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor[J]. Carbon, 2017, 116:760-765.
    [72] An X, Liu F, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 2013, 13(3):909-916.
    [73] Spirito D, Coquillat D, De Bonis S L, et al. High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6):061111.
    [74] Mittendorff M, Winnerl S, Kamann J, et al. Ultrafast graphene-based broadband THz detector[J]. Applied Physics Letters, 2013, 103(2):021113.
    [75] Vabbina P, Choudhary N, Chowdhury A A, et al. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene schottky junction[J]. ACS Applied Materials & Interfaces, 2015, 7(28):15206-15213.
    [76] Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4):2254-2259.
    [77] Zomer P J, Dash S P, Tombros N, et al. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride[J]. Applied Physics Letters, 2011, 99(23):232104.
    [78] Gammelgaard L, Caridad J M, Cagliani A, et al. Graphene transport properties upon exposure to PMMA processing and heat treatments[J]. 2D Materials, 2014, 1(3):035005.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1703) PDF downloads(247) Cited by()

Related
Proportional views

Recent progress on the mechanism and device structure of graphene-based infrared detectors

doi: 10.3788/IRLA202049.0103003
  • 1. Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714;
  • 2. University of Chinese Academy of Sciences, Beijing 100049

Abstract: Graphene has some unique properties, such as ultra-high carrier mobility, zero band gap, broadband response, which make it a promising material in infrared photodetection. In this review, the development history of graphene-based infrared detectors was analyzed, and the mechanism of relevant photoelectric response was summarized. The responsivity, wave-band, response speed and device structure were sorted out. The challenges of material preparation and process compatibility of graphene-based detectors were also discussed and prospected.

Reference (78)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return