Volume 50 Issue 9
Sep.  2021
Turn off MathJax
Article Contents

Ding You, Ding Yuansheng, Qiu Song, Liu Tong, Ren Yuan. Rotational frequency detection of spinning objects at general incidence using vortex beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210451. doi: 10.3788/IRLA20210451
Citation: Ding You, Ding Yuansheng, Qiu Song, Liu Tong, Ren Yuan. Rotational frequency detection of spinning objects at general incidence using vortex beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210451. doi: 10.3788/IRLA20210451

Rotational frequency detection of spinning objects at general incidence using vortex beam (Invited)

doi: 10.3788/IRLA20210451
  • Received Date: 2021-07-04
  • Rev Recd Date: 2021-07-28
  • Publish Date: 2021-09-23
  • The vortex beam is a kind of spatially structured optical beam carrying orbital angular momentum, whose frequency shifts when it illuminates the surface of a rotating object. This phenomenon, known as the optical rotational Doppler effect (RDE), can be used to obtain the rotation frequency of a flat object by measuring the frequency shift. While the frequency shift is influenced by the incident condition, by revealing the influencing law of incident condition, the rotational frequency of the object can be measured directly. Firstly, a method of velocity projection was used to analyze the mechanism of optical RDE. Then, the rotational Doppler frequency shift distribution law at general incidence of vortex beam was obtained, and the theoretical method of extracting the rotational frequency was proposed. In the end, an experiment of RDE using a superimposed Laguerre-Gaussian beam with topological charge $l = \pm 18$ was set up, and rotational Doppler frequency shift spectrum at 4 incident conditions was obtained. The experimental spectrum and the theoretical result were combined, then rotational frequency of the object could be extracted with an error less than 1%.
  • [1] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45: 8185-8189. doi:  10.1103/PhysRevA.45.8185
    [2] Padgett M, Bowman R. Tweezers with a twist [J]. Nature. Photonics, 2011, 5(6): 343-348. doi:  10.1038/nphoton.2011.81
    [3] Phillips D B, Lee M P, Speirits F C, et al. Rotational Doppler velocimetry to probe the angular velocity of spinning microparticles [J]. Physical Review A, 2014, 90(1): 11801. doi:  10.1103/PhysRevA.90.011801
    [4] Yan B L, Lu Z H, Hu J Y, et al. Orbital Angular Momentum (OAM) carried by asymmetric optical beams for wireless communications: Theory, experiment and current challenges [J]. IEEE J Sel Top Quantum Electron, 2020, 27(2): 1-10.
    [5] Marrucci L. Spinning the Doppler effect [J]. Science, 2013, 341(6145): 464-465. doi:  10.1126/science.1242097
    [6] Zhai Y W, Fu S Y, Zhang J Q, et al. Remote detection of a rotator based on rotational Doppler effect [J]. Applied Physics Express, 2020, 13(2): 222012.
    [7] Fischer A. Model-based review of Doppler global velocimetry techniques with laser frequency modulation [J]. Optics and Lasers in Engineering, 2017, 93: 19-35. doi:  10.1016/j.optlaseng.2017.01.004
    [8] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light's orbital angular momentum [J]. Science, 2013, 341(6145): 537-540. doi:  10.1126/science.1239936
    [9] Zhai Y W, Fu S Y, Yin C, et al. Detection of angular acceleration based on optical rotational Doppler effect [J]. Optics Express, 2019, 27(11): 15518-15527. doi:  10.1364/OE.27.015518
    [10] Fu S Y, Wang T, Zhang Z Y, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions [J]. Optics Express, 2017, 25(17): 20098-20108. doi:  10.1364/OE.25.020098
    [11] Qiu S, Liu T, Li Z M, et al. Influence of lateral misalignment on the optical rotational Doppler effect [J]. Applied Optics, 2019, 58(10): 2650-2655. doi:  10.1364/AO.58.002650
    [12] Qiu S, Liu T, Ren Y, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect [J]. Optics Express, 2019, 27(17): 24781-24792. doi:  10.1364/OE.27.024781
    [13] Zhao Dong'e, Wang Siyu, Ma Yayun, et al. Measurement of micro-displacement based on the interference of vortex beams and spherical wave [J]. Infrared and Laser Engineering, 2020, 49(4): 0413005. (in Chinese) doi:  10.3788/IRLA202049.0413005
    [14] Vasnetsov M V, Pas'ko V A, Soskin M S. Analysis of orbital angular momentum of a misaligned optical beam [J]. New Journal of Physics, 2005, 7(1): 46.
    [15] Ding Y, Ren Y, Liu T, et al. Analysis of misaligned optical rotational Doppler effect by modal decomposition [J]. Optics Express, 2021, 29(10): 15288-15299. doi:  10.1364/OE.424943
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(369) PDF downloads(79) Cited by()

Related
Proportional views

Rotational frequency detection of spinning objects at general incidence using vortex beam (Invited)

doi: 10.3788/IRLA20210451
  • Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China

Abstract: The vortex beam is a kind of spatially structured optical beam carrying orbital angular momentum, whose frequency shifts when it illuminates the surface of a rotating object. This phenomenon, known as the optical rotational Doppler effect (RDE), can be used to obtain the rotation frequency of a flat object by measuring the frequency shift. While the frequency shift is influenced by the incident condition, by revealing the influencing law of incident condition, the rotational frequency of the object can be measured directly. Firstly, a method of velocity projection was used to analyze the mechanism of optical RDE. Then, the rotational Doppler frequency shift distribution law at general incidence of vortex beam was obtained, and the theoretical method of extracting the rotational frequency was proposed. In the end, an experiment of RDE using a superimposed Laguerre-Gaussian beam with topological charge $l = \pm 18$ was set up, and rotational Doppler frequency shift spectrum at 4 incident conditions was obtained. The experimental spectrum and the theoretical result were combined, then rotational frequency of the object could be extracted with an error less than 1%.

    • 涡旋光是一类携带轨道角动量的光束,具有螺旋波前和环状的强度分布。这种特殊的光束最早由Allen等人于1992年发现,他们的研究表明光量子不仅可以携带自旋角动量,还可以携带轨道角动量[1]。涡旋光具有螺旋相位$\exp (il\varphi )$,其中$l$为拓扑荷数,$\varphi $为方位角,常见的涡旋光包括拉盖尔-高斯光束、贝塞尔-高斯光束、圆艾里-高斯光束等。涡旋光具有易于操控、信息容量大等特点,在粒子操控[2-3]、量子通信[4]、遥感[5-6]等领域具有广泛的研究与应用,光学旋转多普勒效应就是其中之一。

      “多普勒效应”的主要内容是指观测者接收到物体辐射的波长因为二者的相对运动而产生变化,当二者相互靠近,波被压缩,接收频率变大;当二者相互远离,波被拉长,接收频率变小[7]。这种效应存在于各个波段,在光波段,主要利用平面光波的多普勒效应探测光束传播方向上的线性运动,通过检测波束的频移实现对物体运动速度的测量。与光学线性多普勒效应相比,当涡旋光照射到旋转的平面物体上时,物体会对光束进行调制,使出射光发生频移,这个现象被称为旋转多普勒效应。

      光学旋转多普勒效应可用于测量物体在波束传播方向上的角速度[8]及角加速度[9],当探测光束传播路径上存在一定尺寸的障碍时依然可以实现物体旋转速度的测量[10],在遥感领域具有广泛的应用前景。旋转多普勒频移受光束入射条件的影响,以旋转平板为例,当涡旋光传播轴与物体转轴重合时,频谱上只有唯一的频移信号[8];当两轴存在横向位移或倾斜角时[11-12],频谱会发生展宽。而实际应用中,一般的情况是涡旋光传播轴与物体转轴之间同时存在横向位移和倾斜角的任意入射条件。

      文中从光学旋转多普勒效应的产生机理出发,运用速度投影方法,推导了在涡旋光任意入射条件下的旋转多普勒频移分布规律。搭建了旋转多普勒效应实验装置,通过分析实验频谱提取出物体的旋转频率,相关结论对于拓宽光学旋转多普勒效应在物体转速探测方面的应用具有借鉴意义。

    • 在光学旋转多普勒效应研究中,常用的是拉盖尔-高斯(LG)光束,其复振幅在柱坐标系下可以表示为${{E}}(r,\varphi ,{\textit{z}}) = {{E}}(r,{\textit{z}})\exp (il\varphi )$,其中${{E}}$为电场强度,$\exp (il\varphi )$为螺旋相位,$r$为极径,${\textit{z}}$为传播距离,$l$为拓扑荷数。光束的能流密度矢量由坡印廷矢量表示,由于存在螺旋波前,涡旋光束的坡印廷矢量与光束传播方向存在夹角$\alpha $,且$\sin \alpha = l/kr$,其中$k$为角波数。涡旋光与球面波干涉会出现螺旋状条纹,可用于微小位移的测量[13]

      在速度投影模型中,光束照射到物体表面发生反射,物体对出射光的频率进行调制,产生频移,大小可表示为$\Delta f = {f_0}v/c$,其中${f_0}$为入射光频率,$c$为光速,$v$为物体速度在光束坡印廷矢量方向上的投影。当涡旋光垂直入射到物体的旋转中心时,如图1(a)所示。涡旋光束的坡印廷矢量分布可以近似为半顶角为$\alpha $的圆锥,取物体表面任意散射点为研究对象,该处的坡印廷矢量方向如向量$p$所示。将散射点速度沿着坡印廷矢量方向进行投影,如图1(b)所示,可得光束在该散射点上产生的多普勒频移为:

      Figure 1.  (a) A vortex beam illuminates on the surface of a rotating object vertically; (b) Pointing vector distribution of vortex beam

      其中,$\;\beta $满足$\alpha {\rm{ + }}\;\beta {\rm{ = }}{\pi / 2}$。在速度投影模型中,光轴与物体转轴重合,涡旋光斑上的每个散射点旋转运动的半径为$r$,速度$v = \varOmega r$。可得旋转多普勒频移:

      式中:$\varOmega $表示物体旋转角速度;$c$为光速。

    • 考虑涡旋光任意入射条件下的光学旋转多普勒效应,即分析光斑在平板物体表面的相对位置,约束要素包括三个:(1)光斑中心与物体旋转中心的距离;(2)光斑的偏心率;(3)光斑中心、物体旋转中心的连线与椭圆形光斑长轴的夹角。其中(2)和(3)是由于光束倾斜入射引起的。

      由于倾斜照射,物体表面的涡旋光斑将由圆环状变为椭圆环状,光束传播轴与物体转轴之间的夹角为$\gamma $,最小为0;光斑中心偏离物体旋转中心,横向位移为$d$;光斑中心、物体旋转中心的连线与椭圆形光斑长轴的夹角为$\varphi $,以$Oy'$轴为基准,逆时针为正,顺时针为负,如图2(a)所示。建立两个坐标系,分别为光束坐标系$O - xy{\textit{z}}$与光斑坐标系$O' - xy{\textit{z}}$,如图2(b)所示。则光束坐标系到光斑坐标系的坐标转换矩阵为${{\boldsymbol{M}}_x}( - \gamma )$

      Figure 2.  (a) A vortex beam illuminates on the surface of a rotating object at general incidence; (b) Coordinate systems of the vortex beam and beam spot on the object surface

      在光束坐标系$O - xy{\textit{z}}$中,坡印廷矢量在$(r,0,0)$处的方向可以表示为:

      在光束横截面上,光场中任意点$A$的坡印廷矢量方向为:

      式中:$\theta $为光束横截面上位置矢量$\overrightarrow {OA} $$O{\rm{ - }}x$轴的夹角;矩阵${{\boldsymbol{M}}_{\textit{z}}}(\theta )$表示空间坐标系内绕${\textit{z}}$轴旋转$\theta $的坐标转换矩阵。

      在光斑坐标系中,物体旋转中心$Q$的坐标为$( - \rm d\sin \varphi , - d\cos \varphi ,0)$$A$点在光斑上的投影点为$A'$$\overrightarrow {O'A'} $$O'x$轴的夹角为$\theta '$,且$r$$r'$满足$r'\cos \theta ' = r\cos \theta $$r'\sin \theta ' = r\sin \theta \sec \gamma $,则:

      $A'$点的速度矢量为:

      $A'$点的坡印廷矢量方向与$A$点相同,在光斑坐标系中,$A'$点的坡印廷矢量为:

      此时,光斑上$A'$点发生的多普勒频移为:

      同时,$\theta '$$\theta $满足投影关系,当$\theta $$\pi /2$的整数倍时,其数值等于$\theta '$,将公式(8)改写为:

      其中,中括号内的部分表示$A'$点发生的旋转多普勒频移,后一项为线性多普勒频移。当采用拓扑荷数为$ \pm l$的叠加态涡旋光作为探测光时,${\rm{ + }}l$$ - l$的坡印廷矢量在散射点速度方向上的投影大小相同,方向相反,产生的旋转多普勒频移大小相同符号相反,而线性多普勒效应完全相同。由于叠加态涡旋光的两种成分相互干涉,检测信号是两成分的频率差。则线性频移相减抵消,而旋转多普勒频移加倍。因此,出射光的旋转多普勒频移为:

      $\gamma = 0$$\varphi {\rm{ = }}0$时,即只存在横向位移$d$,频移为:$\Delta f = {{l\varOmega } / \pi }(1 + {d / r}\sin \theta )$;当$d = 0$$\varphi {\rm{ = }}0$时,即只存在倾斜角$\gamma $,频移为:$\Delta f = {{l\varOmega } / \pi }({{{{\sin }^2}\theta } / {\cos \gamma }} + \cos \gamma {\cos ^2}\theta )$;当$\gamma $$d$$\varphi $都为0时,即涡旋光传播轴与物体转轴重合,旋转多普勒频移$\Delta f = {{l\varOmega } / \pi }$,这与已有研究得出的理论公式完全吻合,同时也证明了这一理论结果的普适性。

      由公式(10)可得,涡旋光任意入射条件下,旋转多普勒频移会受到$\gamma 、d、\varphi$等因素的影响,同时光斑上每一点对应一个频移值。为了提取出物体的旋转频率,选取$\theta $的特殊值点:

      通过观察公式(11)可以得到:

      该结果不包含$\gamma $$d$$\varphi $等因素,可分析得到物体的旋转频率$f = {f_{\boldsymbolod }}/2l$

      为了直观地观察涡旋光在任意入射条件下的旋转多普勒频移分布规律,根据公式(10),设定参数$\gamma = {30^\circ },\varphi {\rm{ = }}{30^\circ },d = 1\;\rm mm$,涡旋光半径$r = 4\;\rm mm$,拓扑荷数$l = \pm 18$,物体旋转频率$f = 50\;\rm Hz$,可得仿真的频率曲线如图3所示。

      Figure 3.  Simulated distribution of rotational Doppler frequency shift at general incidence of vortex beam

    • 为了验证涡旋光在任意入射条件下的旋转多普勒频移分布规律及提取出物体转速,设计了旋转多普勒效应实验,如图4(a)所示。

      Figure 4.  (a) Experiment setup of RDE; (b) Digital hologram of superimposed LG vortex; (c) Simulated intensity pattern; (d) Experimental intensity pattern; (e) Experimental intensity pattern of reflected beam

      氦氖激光器产生波长为632 nm的激光束,依次透过偏振片(Pol),由透镜L1和L2进行扩束准直并调整为平面光波,透过偏振分光棱镜(PBS),使水平偏振光照射到空间光调制器(SLM)上,使光束能够均匀覆盖SLM的液晶屏。在SLM上加载拓扑荷数$l = \pm 18$的涡旋光全息图,如图4(b)所示;仿真强度分布如图4(c)所示。经过SLM调制后,在闪耀光栅作用下,出射光包含很多衍射级次,透过由透镜L3、L4和SF(光阑)组成的4f空间滤波系统,挑选出质量和强度都较高的一级衍射光,如图4(d)所示。光束经旋转物体反射后,经过透镜L5和L6组成的望远镜系统汇聚到光电探测器(PD)上,汇聚后的光束强度分布如图4(e)所示。输出信号经放大后传输到示波器上进行采样。平板物体由直流电机带动,电机下方连接旋转平台,并将旋转平台放置在水平位移台上。调整转台可以改变$\gamma $;位移台具备水平方向和竖直方向调节功能,调整位移台可改变横向位移$d$及夹角$\varphi $

      首先,使涡旋光以很小的入射角照射到物体表面($\gamma \approx 0$),可近似为垂直入射。设定电机转速为$53\;\rm Hz$,调整电机的位置,使光斑中心与物体旋转中心精确对准,此时频谱上会出现一个明显的峰值,如图5所示。

      Figure 5.  Experimental frequency spectrum of RDE at coaxial incidence of vortex beam

      由图5可以测得频移值为$1\;906.74\;{\rm{Hz}}$,计算得到物体转动频率为$52.96\;{\rm{Hz}}$,与设定转速的相对误差低于$0.1{\rm{\% }}$。调整转台改变光束的倾斜角$\gamma {\rm{ = }}{20^\circ }$,此时物体表面的光斑变为椭圆状,实验频谱展宽为一系列离散的信号。这是因为倾斜角会改变入射光相对于物体转轴的轨道角动量组成,光束原有的轨道角动量分解为更多的模式,产生新的频移信号[14-15]。频谱如图6(a1)所示。由于实验频谱由离散的信号组成,而公式(10)描述的频移分布是连续曲线,因此需要从实验频谱中挑选特征信号。当$\gamma {\rm{ = }}{20^\circ },d = 0,\varphi = $$ 0$$\Delta {f_0}{\rm{ = }}\Delta {f_\pi }{\rm{ = }}\dfrac{{l\varOmega \cos \gamma }}{\pi }$为最小频移值,$\Delta {f_{{\pi / 2}}}{\rm{ = }}\Delta {f_{{{3\pi }/ 2}}}{\rm{ = }} $$ \dfrac{{l\varOmega }}{{\pi \cos \gamma }}$为最大频移值。从实验频谱中得到最大值为$2\;012\;{\rm{Hz}}$,最小值为$1\;801\;{\rm{Hz}}$,用红色横线表示,理论的频移特征信号用红色“+”号表示,如图6(a2)所示。由公式(12)可得${f_{\boldsymbolod }} = 1\;903.58\;{\rm{Hz}}$,物体旋转频率为$52.88\;{\rm{Hz}}$,与设定值的相对误差为$0.23{\rm{\% }}$

      Figure 6.  Experimental frequency spectrum of RDE at general incidence of vortex beam

      在倾斜的基础上调整位移台,引入横向位移$d = $$ 1\;\rm mm$,频谱出现明显展宽,如图6(b1)所示。其中,$\Delta {f_0}$$\Delta {f_\pi }$对应的信号值依然存在,为$1\;804\;{\rm{Hz}}$$\Delta {f_{{\pi / 2}}}{\rm{ = }} $$ \dfrac{{l\varOmega }}{\pi }\left(\dfrac{1}{{\cos \gamma }} + \dfrac{d}{r}\right)$为最大频移值,$\Delta {f_{{{3\pi } / 2}}}{\rm{ = }}\dfrac{{l\varOmega }}{\pi }\left(\dfrac{1}{{\cos \gamma }} - \dfrac{d}{r}\right)$为最小频移值。从实验频谱中得到最大值为$2\;514\;{\rm{Hz}}$,最小值为$1\;538\;{\rm{Hz}}$。可得${f_{\boldsymbolod }} = 1\;911.78\;{\rm{Hz}}$,物体转速为$53.11\;{\rm{Hz}}$,与设定值的相对误差为$0.21{\rm{\% }}$

      保持倾斜角不变,调整位移台,使$\gamma {\rm{ = }}{20^\circ }, d = $$ 1\;\rm mm,\varphi = {30^\circ }$,得到频谱分布如图6(c1)所示。将理论频谱与实验频谱结合分析可得,$\Delta {f_{{\pi / 2}}}$接近最大值,为$2\;443\;{\rm{Hz}}$$\Delta {f_\pi }$位于频谱中间位置,为$2\;018\;{\rm{Hz}}$$\Delta {f_0}$$\Delta {f_{{{3\pi } / 2}}}$在数值上接近,分别为$1\;591\;{\rm{Hz}}$$1\;640\;{\rm{Hz}}$。由公式(12)计算可得${f_{\boldsymbolod }} = 1\;919.35\;{\rm{Hz}}$,物体转速为$53.32\;{\rm{Hz}}$,与设定值的相对误差为$0.6{\rm{\% }}$

      图6可得,随着$\gamma{\text{、}} d{\text{、}}\varphi $等影响因素的引入,理论频谱和实验频谱都出现了展宽,在相同采样时长和采样点数的情况下,实验频谱的信噪比降低,给信号选取带来困难,测量结果的相对误差也逐渐增大。同时,随着信号峰值的增多,特征信号的选取也变得更加复杂。当$\gamma \ne 0,d{\rm{ = }}0,\varphi {\rm{ = }}0$时,特征信号恰好为频移的最值。当$\gamma{\text{、}} d{\text{、}}\varphi $都不为$0$时,需要将理论频谱与实验频谱相结合,选取最接近理论频移的信号作为特征信号,即可完成物体旋转频率的测量。这种方法对信噪比提出了一定要求,当某个特征信号缺失时,会对旋转频率的测量结果带来较大误差。但当频谱完整时,测量结果精度较高,具有广泛的适用价值。

    • 文中在线性多普勒效应的基础上建立速度投影模型,分析了任意入射条件下的涡旋光旋转多普勒效应,得到的理论频移规律同时也适用于涡旋光倾斜入射或偏心入射,具有更加广泛的适用性。设计了旋转多普勒效应实验,在任意入射条件下成功对旋转物体的旋转频率进行了测量。随着入射条件变得复杂,旋转多普勒频谱出现明显展宽,但信噪比降低,通过合理选取特征信号,测量结果可以保持在较低的误差范围内。文中的相关结论对于利用涡旋光在实际条件下开展旋转目标探测具有一定的指导意义。

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return