Volume 50 Issue 11
Nov.  2021
Turn off MathJax
Article Contents

Yan Sai, Xie Xin, Xu Xiulai. Research progress of topological lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210506. doi: 10.3788/IRLA20210506
Citation: Yan Sai, Xie Xin, Xu Xiulai. Research progress of topological lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210506. doi: 10.3788/IRLA20210506

Research progress of topological lasers (Invited)

doi: 10.3788/IRLA20210506
  • Received Date: 2021-07-20
  • Rev Recd Date: 2021-08-25
  • Available Online: 2021-12-03
  • Publish Date: 2021-11-30
  • With the development of topological photonics, topological lasers and semiconductor lasers are promoted by the discovery of the topological edge states and corner states with robustness against defects and perturbations. Firstly, the development history of the topological lasers and the principles of the various kinds of topological lasers was reviewed; Secondly recent realizations of various topological lasers were analyzed and the basic physics about topological edge states and topological corner states was explained. In these experiments, the modes of topological laser were decided by the dielectric structure. The laser was excited by pumping the photonic gain. The analysis show that topological lasers based on topological corner states have higher efficiency and lower threshold than those based on topological edge state, due to the high quality factor and small mode volume of topological corner state, which provides the possibility for future photonic integrated chip. Finally, the challenge and potential applications in the future were outlooked, which was beneficial to explore practical topological laser.
  • [1] Chalcraft A R A, Lam S, O’Brien D, et al. Mode structure of the L 3 photonic crystal cavity [J]. Applied Physics Letters, 2007, 90(24): 241117. doi:  10.1063/1.2748310
    [2] Safavi-Naeini A H, Alegre T P M, Winger M, et al. Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity [J]. Applied Physics Letters, 2010, 97(18): 181106. doi:  10.1063/1.3507288
    [3] Vučković J, Lončar M, Mabuchi H, et al. Design of photonic crystal microcavities for cavity QED [J]. Physical Review E, 2001, 65(1): 016608. doi:  10.1103/PhysRevE.65.016608
    [4] Yamamoto T, Pashkin Y A, Astafiev O, et al. Demonstration of conditional gate operation using superconducting charge qubits [J]. Nature, 2003, 425(6961): 941-944. doi:  10.1038/nature02015
    [5] Yoshie T, Vučković J, Scherer A, et al. High quality two-dimensional photonic crystal slab cavities [J]. Applied Physics Letters, 2001, 79(26): 4289-4291. doi:  10.1063/1.1427748
    [6] Faraon A, Waks E, Englund D, et al. Efficient photonic crystal cavity-waveguide couplers [J]. Applied Physics Letters, 2007, 90(7): 073102. doi:  10.1063/1.2472534
    [7] Goyal A K, Pal S. Design and simulation of high sensitive photonic crystal waveguide sensor [J]. Optik, 2015, 126(2): 240-243. doi:  10.1016/j.ijleo.2014.08.174
    [8] Gu L, Jiang W, Chen X, et al. High speed silicon photonic crystal waveguide modulator for low voltage operation [J]. Applied Physics Letters, 2007, 90(7): 071105. doi:  10.1063/1.2475580
    [9] Barik S, Karasahin A, Flower C, et al. A topological quantum optics interface [J]. Science, 2018, 359(6376): 666-668. doi:  10.1126/science.aaq0327
    [10] Tambasco J L, Corrielli G, Chapman R J, et al. Quantum interference of topological states of light [J]. Science Advances, 2018, 4(9): 3187. doi:  10.1126/sciadv.aat3187
    [11] Hafezi M, Mittal S, Fan J, et al. Imaging topological edge states in silicon photonics [J]. Nature Photonics, 2013, 7(12): 1001-1005. doi:  10.1038/nphoton.2013.274
    [12] Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry [J]. Physical Review Letters, 2008, 100(1): 013904. doi:  10.1103/PhysRevLett.100.013904
    [13] Khanikaev A B, Mousavi S H, Tse W K, et al. Photonic topological insulators [J]. Nature Materials, 2013, 12(3): 233-239. doi:  10.1038/nmat3520
    [14] Lu L, Joannopoulos J D, Soljačić M. Topological photonics [J]. Nature Photonics, 2014, 8(11): 821-829. doi:  10.1038/nphoton.2014.248
    [15] Mittal S, Goldschmidt E A, Hafezi M. A topological source of quantum light [J]. Nature, 2018, 561(7724): 502-506. doi:  10.1038/s41586-018-0478-3
    [16] Ozawa T, Price H M, Amo A, et al. Topological photonics [J]. Reviews of Modern Physics, 2019, 91(1): 015006. doi:  10.1103/RevModPhys.91.015006
    [17] Rechtsman M C, Zeuner J M, Plotnik Y, et al. Photonic Floquet topological insulators [J]. Nature, 2013, 496(7444): 196-200. doi:  10.1038/nature12066
    [18] Wang Y, Lu Y H, Mei F, et al. Direct observation of topology from single-photon dynamics [J]. Physical Review Letters, 2019, 122(19): 193903. doi:  10.1103/PhysRevLett.122.193903
    [19] Wang Z, Chong Y, Joannopoulos J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states [J]. Nature, 2009, 461(7265): 772-775. doi:  10.1038/nature08293
    [20] Wu L H, Hu X. Scheme for achieving a topological photonic crystal by using dielectric material [J]. Physical Review Letters, 2015, 114(22): 223901. doi:  10.1103/PhysRevLett.114.223901
    [21] Chen W J, Jiang S J, Chen X D, et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide [J]. Nature Communications, 2014, 5(1): 5782. doi:  10.1038/ncomms6782
    [22] Yang Y, Xu Y F, Xu T, et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials [J]. Physical Review Letters, 2018, 120(21): 217401. doi:  10.1103/PhysRevLett.120.217401
    [23] Gao Y F, Sun J P, Xu N, et al. Manipulation of topological beam splitter based on honeycomb photonic crystals [J]. Optics Communications, 2021, 483: 126646. doi:  10.1016/j.optcom.2020.126646
    [24] He L, Ji H Y, Wang Y J, et al. Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs [J]. Optics Express, 2020, 28(23): 34015-34023. doi:  10.1364/OE.409265
    [25] Qi L, Wang G L, Liu S, et al. Engineering the topological state transfer and topological beam splitter in an even-sized Su-Schrieffer-Heeger chain [J]. Physical Review A, 2020, 102(2): 022404. doi:  10.1103/PhysRevA.102.022404
    [26] Yang Y, Gao Z, Xue H, et al. Realization of a three-dimensional photonic topological insulator [J]. Nature, 2019, 565(7741): 622-626. doi:  10.1038/s41586-018-0829-0
    [27] Ji C Y, Liu G B, Zhang Y, et al. Transport tuning of photonic topological edge states by optical cavities [J]. Physical Review A, 2019, 99(4): 043801. doi:  10.1103/PhysRevA.99.043801
    [28] Kim H R, Hwang M S, Smirnova D, et al. Multipolar lasing modes from topological corner states [J]. Nature Communications, 2020, 11(1): 5758. doi:  10.1038/s41467-020-19609-9
    [29] Li Y, Yu Y, Liu F, et al. Topology-controlled photonic cavity based on the near-conservation of the valley degree of freedom [J]. Physical Review Letters, 2020, 125(21): 213902. doi:  10.1103/PhysRevLett.125.213902
    [30] Ota Y, Liu F, Katsumi R, et al. Photonic crystal nanocavity based on a topological corner state [J]. Optica, 2019, 6(6): 786-789. doi:  10.1364/OPTICA.6.000786
    [31] Raghu S, Haldane F D M. Analogs of quantum-Hall-effect edge states in photonic crystals [J]. Physical Review A, 2008, 78(3): 033834. doi:  10.1103/PhysRevA.78.033834
    [32] Hafezi M, Demler E A, Lukin M D, et al. Robust optical delay lines with topological protection [J]. Nature Physics, 2011, 7(11): 907-912. doi:  10.1038/nphys2063
    [33] Gao F, Xue H, Yang Z, et al. Topologically protected refraction of robust kink states in valley photonic crystals [J]. Nature Physics, 2018, 14(2): 140-144. doi:  10.1038/nphys4304
    [34] Ma T, Shvets G. All-Si valley-hall photonic topological insulator [J]. New Journal of Physics, 2016, 18(2): 025012. doi:  10.1088/1367-2630/18/2/025012
    [35] Noh J, Huang S, Chen K P, et al. Observation of photonic topological valley Hall edge states [J]. Physical Review Letters, 2018, 120(6): 063902. doi:  10.1103/PhysRevLett.120.063902
    [36] Shalaev M I, Walasik W, Tsukernik A, et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths [J]. Nature Nanotechnology, 2019, 14(1): 31-34. doi:  10.1038/s41565-018-0297-6
    [37] Yoshimi H, Yamaguchi T, Katsumi R, et al. Experimental demonstration of topological slow light waveguides in valley photonic crystals [J]. Optics Express, 2021, 29(9): 13441-13450. doi:  10.1364/OE.422962
    [38] Gong Y, Wong S, Bennett A J, et al. Topological insulator laser using valley-Hall photonic crystals [J]. ACS Photonics, 2020, 7(8): 2089-2097. doi:  10.1021/acsphotonics.0c00521
    [39] Harder T H, Sun M, Egorov O A, et al. Coherent topological polariton laser [J]. ACS Photonics, 2021, 8(5): 1377-1384. doi:  10.1021/acsphotonics.0c01958
    [40] Pilozzi L, Conti C. Topological cascade laser for frequency comb generation in PT-symmetric structures [J]. Optics Letters, 2017, 42(24): 5174-5177. doi:  10.1364/OL.42.005174
    [41] Smirnova D, Tripathi A, Kruk S, et al. Room-temperature lasing from nanophotonic topological cavities [J]. Light: Science & Applications, 2020, 9(1): 127.
    [42] Zhao H, Miao P, Teimourpour M H, et al. Topological hybrid silicon microlasers [J]. Nature Communications, 2018, 9(1): 981. doi:  10.1038/s41467-018-03434-2
    [43] Qian Z, Li Z, Hao H, et al. Absorption reduction of large purcell enhancement enabled by topological state-led mode coupling [J]. Physical Review Letters, 2021, 126(2): 023901. doi:  10.1103/PhysRevLett.126.023901
    [44] Xie X, Zhang W, He X, et al. Cavity quantum electrodynamics with second-order topological corner state [J]. Laser & Photonics Reviews, 2020, 14(8): 1900425.
    [45] St-Jean P, Goblot V, Galopin E, et al. Lasing in topological edge states of a one-dimensional lattice [J]. Nature Photonics, 2017, 11(10): 651-656. doi:  10.1038/s41566-017-0006-2
    [46] Han C, Lee M, Callard S, et al. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array [J]. Light: Science & Applications, 2019, 8(1): 40.
    [47] Bahari B, Ndao A, Vallini F, et al. Nonreciprocal lasing in topological cavities of arbitrary geometries [J]. Science, 2017, 358(6363): 636-640. doi:  10.1126/science.aao4551
    [48] Zhang W, Xie X, Hao H, et al. Low-threshold topological nanolasers based on the second-order corner state [J]. Light: Science & Applications, 2020, 9(1): 109.
    [49] Parto M, Wittek S, Hodaei H, et al. Edge-mode lasing in 1D topological active arrays [J]. Physical Review Letters, 2018, 120(11): 113901. doi:  10.1103/PhysRevLett.120.113901
    [50] Fang K, Yu Z, Fan S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation [J]. Nature Photonics, 2012, 6(11): 782-787. doi:  10.1038/nphoton.2012.236
    [51] Asbóth J K, Oroszlány L, Pályi A. A short course on topological insulators [J]. Lecture Notes in Physics, 2016, 919: 166.
    [52] Ota Y, Takata K, Ozawa T, et al. Active topological photonics [J]. Nanophotonics, 2020, 9(3): 547-567. doi:  10.1515/nanoph-2019-0376
    [53] Weimann S, Kremer M, Plotnik Y, et al. Topologically protected bound states in photonic parity–time-symmetric crystals [J]. Nature Materials, 2017, 16(4): 433-438. doi:  10.1038/nmat4811
    [54] Ota Y, Katsumi R, Watanabe K, et al. Topological photonic crystal nanocavity laser [J]. Communications Physics, 2018, 1(1): 86. doi:  10.1038/s42005-018-0083-7
    [55] Xiao M, Zhang Z Q, Chan C T. Surface impedance and bulk band geometric phases in one-dimensional systems [J]. Physical Review X, 2014, 4(2): 021017. doi:  10.1103/PhysRevX.4.021017
    [56] Alpeggiani F, Andreani L C, Gerace D. Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities [J]. Applied Physics Letters, 2015, 107(26): 261110. doi:  10.1063/1.4938395
    [57] Simbula A, Schatzl M, Zagaglia L, et al. Realization of high-Q/V photonic crystal cavities defined by an effective Aubry-André-Harper bichromatic potential [J]. APL Photonics, 2017, 2(5): 056102. doi:  10.1063/1.4979708
    [58] Alpeggiani F, Kuipers L. Topological edge states in bichromatic photonic crystals [J]. Optica, 2019, 6(1): 96-103. doi:  10.1364/OPTICA.6.000096
    [59] Pilozzi L, Conti C. Topological lasing in resonant photonic structures [J]. Physical Review B, 2016, 93(19): 195317. doi:  10.1103/PhysRevB.93.195317
    [60] Wang Z, Chong Y D, Joannopoulos J D, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal [J]. Physical Review Letters, 2008, 100(1): 013905. doi:  10.1103/PhysRevLett.100.013905
    [61] Klembt S, Harder T H, Egorov O A, et al. Exciton-polariton topological insulator [J]. Nature, 2018, 562(7728): 552-556. doi:  10.1038/s41586-018-0601-5
    [62] Nalitov A V, Solnyshkov D D, Malpuech G. Polariton Z topological insulator [J]. Physical Review Letters, 2015, 114(11): 116401. doi:  10.1103/PhysRevLett.114.116401
    [63] Karzig T, Bardyn C E, Lindner N H, et al. Topological polaritons [J]. Physical Review X, 2015, 5(3): 031001. doi:  10.1103/PhysRevX.5.031001
    [64] Kartashov Y V, Skryabin D V. Two-dimensional topological polariton laser [J]. Physical Review Letters, 2019, 122(8): 083902. doi:  10.1103/PhysRevLett.122.083902
    [65] Carusotto I, Ciuti C. Quantum fluids of light [J]. Reviews of Modern Physics, 2013, 85(1): 299. doi:  10.1103/RevModPhys.85.299
    [66] Kartashov Y V, Skryabin D V. Modulational instability and solitary waves in polariton topological insulators [J]. Optica, 2016, 3(11): 1228-1236. doi:  10.1364/OPTICA.3.001228
    [67] Kartashov Y V, Skryabin D V. Bistable topological insulator with exciton-polaritons [J]. Physical Review Letters, 2017, 119(25): 253904. doi:  10.1103/PhysRevLett.119.253904
    [68] Bandres M A, Wittek S, Harari G, et al. Topological insulator laser: Experiments [J]. Science, 2018, 359(6381): 4005.
    [69] Harari G, Bandres M A, Lumer Y, et al. Topological insulator laser:Theory [J]. Science, 2018, 359(6381): 4003.
    [70] Kane C L, Mele E J. Z 2 topological order and the quantum spin Hall effect [J]. Physical Review Letters, 2005, 95(14): 146802. doi:  10.1103/PhysRevLett.95.146802
    [71] Kane C L, Mele E J. Quantum spin Hall effect in graphene [J]. Physical Review Letters, 2005, 95(22): 226801. doi:  10.1103/PhysRevLett.95.226801
    [72] Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J]. Science, 2006, 314(5806): 1757-1761. doi:  10.1126/science.1133734
    [73] Chen X D, Deng W M, Shi F L, et al. Direct observation of corner states in second-order topological photonic crystal slabs [J]. Physical Review Letters, 2019, 122(23): 233902. doi:  10.1103/PhysRevLett.122.233902
    [74] Dutt A, Minkov M, Williamson I A D, et al. Higher-order topological insulators in synthetic dimensions [J]. Light: Science & Applications, 2020, 9(1): 131.
    [75] Imhof S, Berger C, Bayer F, et al. Topolectrical-circuit realization of topological corner modes [J]. Nature Physics, 2018, 14(9): 925-929. doi:  10.1038/s41567-018-0246-1
    [76] Langbehn J, Peng Y, Trifunovic L, et al. Reflection-symmetric second-order topological insulators and superconductors [J]. Physical Review Letters, 2017, 119(24): 246401. doi:  10.1103/PhysRevLett.119.246401
    [77] Liu T, Zhang Y R, Ai Q, et al. Second-order topological phases in non-hermitian systems [J]. Physical Review Letters, 2019, 122(7): 076801. doi:  10.1103/PhysRevLett.122.076801
    [78] Serra-Garcia M, Peri V, Süsstrunk R, et al. Observation of a phononic quadrupole topological insulator [J]. Nature, 2018, 555(7696): 342-345. doi:  10.1038/nature25156
    [79] Mittal S, Orre V V, Zhu G, et al. Photonic quadrupole topological phases [J]. Nature Photonics, 2019, 13(10): 692-696. doi:  10.1038/s41566-019-0452-0
    [80] Noh J, Benalcazar W A, Huang S, et al. Topological protection of photonic mid-gap defect modes [J]. Nature Photonics, 2018, 12(7): 408-415. doi:  10.1038/s41566-018-0179-3
    [81] Peterson C W, Benalcazar W A, Hughes T L, et al. A quantized microwave quadrupole insulator with topologically protected corner states [J]. Nature, 2018, 555(7696): 346-350. doi:  10.1038/nature25777
    [82] Benalcazar W A, Bernevig B A, Hughes T L. Quantized electric multipole insulators [J]. Science, 2017, 357(6346): 61-66. doi:  10.1126/science.aah6442
    [83] Xie B Y, Su G X, Wang H F, et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals [J]. Physical Review Letters, 2019, 122(23): 233903. doi:  10.1103/PhysRevLett.122.233903
    [84] Zhang X, Wang H X, Lin Z K, et al. Second-order topology and multidimensional topological transitions in sonic crystals [J]. Nature Physics, 2019, 15(6): 582-588. doi:  10.1038/s41567-019-0472-1
    [85] Schindler F, Cook A M, Vergniory M G, et al. Higher-order topological insulators [J]. Science Advances, 2018, 4(6): 0346. doi:  10.1126/sciadv.aat0346
    [86] Franca S, van den Brink J, Fulga I C. An anomalous higher-order topological insulator [J]. Physical Review B, 2018, 98(20): 201114. doi:  10.1103/PhysRevB.98.201114
    [87] Kempkes S N, Slot M R, van Den Broeke J J, et al. Robust zero-energy modes in an electronic higher-order topological insulator [J]. Nature Materials, 2019, 18(12): 1292-1297. doi:  10.1038/s41563-019-0483-4
    [88] Park M J, Kim Y, Cho G Y, et al. Higher-order topological insulator in twisted bilayer graphene [J]. Physical Review Letters, 2019, 123(21): 216803. doi:  10.1103/PhysRevLett.123.216803
    [89] Xue H, Yang Y, Gao F, et al. Acoustic higher-order topological insulator on a kagome lattice [J]. Nature Materials, 2019, 18(2): 108-112. doi:  10.1038/s41563-018-0251-x
    [90] Xue H, Yang Y, Liu G, et al. Realization of an acoustic third-order topological insulator [J]. Physical Review Letters, 2019, 122(24): 244301. doi:  10.1103/PhysRevLett.122.244301
    [91] Zhong H, Kartashov Y V, Szameit A, et al. Theory of topological corner state laser in Kagome waveguide arrays [J]. APL Photonics, 2021, 6(4): 040802. doi:  10.1063/5.0042975
    [92] Atala M, Aidelsburger M, Barreiro J T, et al. Direct measurement of the Zak phase in topological Bloch bands [J]. Nature Physics, 2013, 9(12): 795-800. doi:  10.1038/nphys2790
    [93] Liu X J, Ren M, Pan Q, et al. The Zak phase calculation of one-dimensional photonic crystals with classical and quantum theory [J]. Physica E: Low-dimensional Systems and Nanostructures, 2021, 126: 114415. doi:  10.1016/j.physe.2020.114415
    [94] Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current [J]. Applied Physics Letters, 1982, 40(11): 939-941. doi:  10.1063/1.92959
    [95] Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode [J]. Applied Physics Letters, 2008, 93(24): 241106. doi:  10.1063/1.3050539
    [96] Qian C, Wu S, Song F, et al. Two-photon Rabi splitting in a coupled system of a nanocavity and exciton complexes [J]. Physical Review Letters, 2018, 120(21): 213901. doi:  10.1103/PhysRevLett.120.213901
    [97] Yang J, Qian C, Xie X, et al. Diabolical points in coupled active cavities with quantum emitters [J]. Light: Science & Applications, 2020, 9(1): 6.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(698) PDF downloads(165) Cited by()

Related
Proportional views

Research progress of topological lasers (Invited)

doi: 10.3788/IRLA20210506
  • Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract: With the development of topological photonics, topological lasers and semiconductor lasers are promoted by the discovery of the topological edge states and corner states with robustness against defects and perturbations. Firstly, the development history of the topological lasers and the principles of the various kinds of topological lasers was reviewed; Secondly recent realizations of various topological lasers were analyzed and the basic physics about topological edge states and topological corner states was explained. In these experiments, the modes of topological laser were decided by the dielectric structure. The laser was excited by pumping the photonic gain. The analysis show that topological lasers based on topological corner states have higher efficiency and lower threshold than those based on topological edge state, due to the high quality factor and small mode volume of topological corner state, which provides the possibility for future photonic integrated chip. Finally, the challenge and potential applications in the future were outlooked, which was beneficial to explore practical topological laser.

    • 利用光学结构去操纵光的行为一直是光子学研究的焦点。人们通过在半导体材料上设计一些光学结构去对光进行操控,比如将光局域在某个特定空间上[1-5],控制光的传输特性[6-8]等。经过近几十年的努力,人们对操纵光子和调控纳米级光学结构进行了大量的研究,目前对纳米光子学的研究为实现大规模的集成光学芯片奠定了基础。但由于结构尺度在纳米尺度,加工过程中引入的缺陷、杂质等,会大大影响到光学结构的光学性能。随着拓扑学的发展并延伸到光学领域,拓扑光子学开始吸引国内外广泛的关注,为解决这一问题提供了一个很好的思路。

      近年来,随着拓扑光子学的蓬勃发展[9-20],许多有趣的物理现象被发现,同时也推动了新型光子器件的发展,如光学波导[21-22]、光学分束器[23-25]、光学隔离器[26]以及谐振腔[27-30]。类比于量子霍尔效应[12, 31]、量子自旋霍尔效应[11, 13, 32]、自旋谷霍尔效应[33-35],不同的二维拓扑光子系统已经被理论提出并在实验上得到验证。二维光子系统所支持的一维边缘态能够抵抗来自缺陷、微扰等的散射,尖锐的弯曲波导(Z型波导)[36-37]。这些对缺陷、微扰等的鲁棒性,以及新兴的功能在构建紧凑、低损耗和多功能性的微纳光子集成芯片、光通信等方面具有非常大的吸引力。最近,国内外多个课题组尝试用拓扑光子学来革新半导体激光器。由于拓扑光学模式具有拓扑保护,它对激光性能具有很大的改善,并且可以得到具有鲁棒性的单模激光[28, 38-42]。除了拓扑激光外,在拓扑光子结构引入光学增益还可以用来探索新颖的拓扑物理现象,如腔量子电动力学[43-44]。文中主要概述有源的拓扑光子结构在拓扑激光器方面的应用,包括基于拓扑边缘态,拓扑角态的拓扑激光器,重点是简单介绍各种类型的拓扑激光器以及拓扑激光器的发展历程。

      图1所示为利用不同平台来构建各种各样的拓扑激光器结构。图1(a)为一维微柱阵列[45]图1(b)为一维微环阵列[42]图1(c)为纳米尺度的拓扑L3光子晶体[46]图1(d)为二维环形谐振腔[47]图1(e)为二维拓扑角态的光子晶体[48]。对于支持静态腔模的零维边缘态,光学谐振腔经常采用一维拓扑链,每个位点由微柱[45]或者微环谐振腔[42]组成。如果位点上是纳米尺度的腔也可以形成拓扑纳米腔模式[46]。除了采用一维拓扑链,还有利用拓扑性质不同的纳米梁组成的界面来支持一个强局域的界面态。在二维体系中,可以通过边界态构成环形谐振腔或者高阶拓扑光子晶体来实现拓扑激光器。其中,第一个在二维结构中报道的拓扑激光器就是利用磁光效应来实现拓扑激光器的二维光子晶体[47]。二维体系中除了通过边缘态来构造激光器,在纳米尺度,通过设计高阶结构,即拓扑角态来构建激光器,将光子晶体腔的优势与拓扑结合,构建高品质因子(Q),低模式体积的拓扑角态激光器[48]

      Figure 1.  Topological lasers structure

    • 一维微米尺度的激光器一般是采用一维的Su-Schrieffer-Heeger(SSH)模型的光子晶格[42, 45, 49],它是一种最简单构建拓扑结构的模型,最初是用来描述聚乙炔分子的电子输运所提出来的一种双周期紧束缚模型[50]。其结构简单,但具有丰富的物理现象。图2(a)图2(b)为SSH模型的原理图[45]图2(c)图2(d)pxpy轨道子空间在晶格链[45]图2(e)为环形谐振晶格[49]图2(f)为一维微环阵列[42]。在SSH模型中,每个原胞由两个不等价的格点anbn组成,多个原胞组成一条晶格常数为a的一维二聚体晶格链,一维二聚体晶格链的胞内跃迁强度t与胞间跃迁强度t′可以调节。在动量空间,以每个原胞的anbn格点为基础,哈密顿量可以写成[51]

      Figure 2.  1D topological microlasers structure

      通过求解得到两个具有能隙的能带,能隙宽度为2|t-t′|。可以看到,当一维二聚体晶格链的胞内跃迁强度t与胞间跃迁强度t′不相等时,系统将产生能隙。当胞内跃迁强度t大于胞间跃迁强度t′时,系统的缠绕数为0,当胞内跃迁强度t小于胞间跃迁强度t′时,系统缠绕数为1,这两个缠绕数对应于系统两个不同的拓扑相,导致在这两种情况下系统具有完全不同的拓扑态,分别为拓扑平庸和拓扑非平庸。拓扑非平庸的主要特征是在链与真空的边界处会发生拓扑相变,从而出现边界态,在能带中的表现是在能隙中出现了边缘态。因此可以根据SSH模型来设计具有拓扑边界态的拓扑结构[52]

      第一个用拓扑边缘态产生激光的一维SSH模型光子晶格是使用无机半导体制成的,其中量子阱作为增益介质。2017年,Philippe St-Jean等人采取了微柱的zigzag极化晶格实现了第一个基于具有拓扑保护的边缘态的激光器[45](见图1(a))。在微柱的zigzag极化晶格中,SSH哈密顿量是通过pxpy轨道的耦合实现的。图2(c)中,微柱间的交替排列导致了模式重叠,由此可以看出px轨道在重叠时表现为强的胞内耦合强度,弱的胞间耦合强度;而对于py轨道则表现为相反的耦合排列。虽然这两种轨道子空间具有相同的能隙,但对于晶格链的边缘,(见图2(d)),只有py轨道子空间在晶格链的边缘拥有一个弱链接,呈现出一个拓扑边缘态,而px轨道子空间在晶格链的边缘拥有一个强链接。由于SSH模型的手性对称性,对于弱的增益/损耗,体模的增益区域和损耗区域重叠,使得体模的净增益消失。而局域在晶格链的终端处或者畴壁处的拓扑模式,通过泵浦产生非零的净增益。为了让拓扑模式中获得比体模更大的增益,他们对晶格链的边缘进行了光泵浦。由于能隙保持打开的状态,泵浦晶格链的边缘产生了拓扑界面态的单模激光[53]

      同年,Parto M等人[49]以及Zhao H等人[42]使用以 InGaAsP、InP量子阱作为增益介质的环形谐振晶格实现了微环激光器。通过相邻环间的交错分离来实现胞内耦合强度t和胞间耦合强度t′。两者工作的区别是:Parto M等人[49]将拓扑态局域在了晶格链的边缘处,在晶格链的边缘设计了一个弱耦合,见图2(e);而Zhao H等人[42]将拓扑态局域在了两个具有不同拓扑数的晶格链的界面上,见图2(f)。通过设计不同的泵浦方式,使得相应的拓扑模式得到增益,从而发出激光。

      对于上述工作,比较有趣的是拓扑激光器的模式对无序具有鲁棒性,晶格的哈密顿量的手性对称性使得拓扑模式对胞内耦合强度t和胞间耦合强度t′的扰动不敏感,只要拓扑模式的能量能很好地隔离在能隙中间,所产生的激光并不会受到很大的影响。St-Jean P[45]和Zhao H等人[42]的实验都很好地证实了这一点。

    • 从拓扑光子学未来应用的角度来看,以上讨论的基于零维边缘态的微米尺度激光器仍有些不足,尤其是对于密集的纳米光子电路的集成来说,当务之急是将微米尺度的激光器缩小到纳米尺度上,因为纳米尺度的腔可以增强光与物质相互作用,提高激光器的性能,例如提高自发辐射耦合因子,实现低阈值、低损耗、高效率的激光器,因此纳米尺度的拓扑激光器也开始出现。实现拓扑纳米腔的一种简单的方法是利用纳米尺寸的谐振器来构建一维体系统。2018年,Ota Y等人在嵌有InAs量子点的GaAs纳米梁的光子晶体上实现了基于零维边缘态的拓扑激光器[54]。该课题组设计的支持强局域的边界模式,该模式具有很小的模式体积(0.23(λ/n)3),并且品质因子达到59 700,实现了自发辐射耦合因子为0.03、阈值为46 μW的拓扑激光。图3(a)所示为该课题组所设计的拓扑纳米梁的结构示意图,选择合适的纳米梁宽度和厚度,通过在纳米梁中刻蚀正方形空气孔得到一维光子晶体能带。光子晶体纳米梁是基于广义的SSH模型,但由于次近邻等耦合的存在它的手性对称性被打破,但它具有反演对称,仍具有量子化的Zak相位特征。因此,光子晶体的纳米梁的拓扑性质可以用Zak相位特征描述[55]

      Figure 3.  1D topological nanolasers structure

      图3(b)所示为泵浦光功率分别为5 μW和150 μW时所收集的光谱图。对于5 μW功率泵浦,从图3(b)可以看到来自量子点自发辐射的宽背景光谱以及一个窄的腔模的尖峰,当泵浦光功率达到150 μW时,量子点的自发辐射的宽背景光谱被抑制,腔模强度得到增强,并在光谱中占到主导地位。随着泵浦光的功率不断增强,腔模强度变化先是缓慢增强,当泵浦光的功率增加到阈值46 μW时,腔模开始迅速增强,可以看到激光产生的一个过渡过程,如图3(c)所示。

      类似地,Han C等人[46]利用L3腔构成SSH模的格点,在InAsP/InP光子晶体的纳米腔实现激光器,其中纳米腔的Q值达到35 000,而激光的自发辐射耦合因子在波长1 550 nm达到了0.15。纳米尺度的拓扑光子晶体对于实现小型化的拓扑激光器具有很重要的发展前途,而且利用光子晶体进行拓扑设计的最重要的好处是能够通过改变光子晶体参数而系统的控制Q值和模式体积,同时保持单模操作。光子晶体波导也是实现零维纳米腔的一维平台[56-58]。除此之外,利用拓扑的概念,可以利用光子晶体波导构成Aubry-Andre-Harper模型[59]实现高Q的光学纳腔,从而实现拓扑激光器。

    • Haldane FDM等人第一次提出通过打破时间反演对称性来打开光子系统拓扑能隙[12],并且在微波频段实现[60],其中光子晶体结构由铁氧体棒构成。在这些开创性的工作中,由于系统的时间反演对称性被打破,在具有不同拓扑性质的结构之间会出现手性边缘模式,它具有对缺陷、无序的鲁棒性。通常,在传统的光子晶体腔中缺陷和无序的存在会导致散射损失,使得腔的品质因子下降以及输出功率降低,最终使得激光器的性能下降,而拓扑手性边缘模式对于这些是具有鲁棒性的,可以很好地提高激光器的性能。2017年,Bahari B等第一次用实验实现了二维拓扑边缘态激光器[47],该课题组使用嵌着YIG(Yttrium iron garnet)结构的光子晶体,通过磁光效应来打破了时间反演对称性,从而在Γ点打开了拓扑带隙[47]。在静态磁场的作用下,用1 060 nm波长脉冲光去泵浦整个结构,增益强烈地局域在边缘态上,边界的形状对其是没有影响的,如图4(a)所示。通过改变静态磁场的方向,可以验证拓扑手性边缘模式的单向性。但是由于光学波段地磁光效应非常弱,使得打开的拓扑能隙非常小(42 pm),如图4(b)所示。然而,拓扑边缘模式所发出来的光需要进一步使用二阶强度相关的实验证明[35]。在后续的工作中,该团队设计了环形拓扑非平庸-平庸界面来产生携带轨道角动量的相干光束[47]。该设计成功产生了任意大的拓扑电荷,并将不同的轨道角动量多路复用发射到单个样品上。

      Figure 4.  Topological structure of the 2D topological edge state

      另一个二维激光器的实现是基于蜂窝晶格的激子-极化子与强磁场的结合[61]。极化子的自旋-轨道耦合与磁场的导致的Zeeman位移的结合得到由Chern相位来描述的拓扑能隙[62-63]。由于能到的拓扑能隙很小,使得边缘态的强局域变得困难。随后,Y. V. Kartashov和D. V. Skryabin通过理论证实了非线性稳定的激光模式是可以实现的[64],他们还发现,当达到激光阈值之后,自作用项会导致边缘模式的频率向体带边缘移动。

      由此可以看到,文中所讨论为二维拓扑激光器提供了一种新型的光源,通过打破时间反演对称,使得它可以以任意形状发射激光,且具有手性度。有趣的是,极化子晶格呈现显著的非线性[65],因此提供了一个很好的平台来研究激光机制中的拓扑性质与非线性相互作用[66-67]。这类打破时间反演对称性的拓扑激光器的实验研究有很大的应用前景。

      除此之外,还有一种二维拓扑激光器,即没有打破时间反演对称性的激光器[68-69]。此类激光器是基于Harper-Hofstadter模型所构建的,最初使用的是无源的光子晶体平台的环形谐振器[11, 32]

      Harper-Hofstadter模型是一个在垂直于二维平面上施加一个均匀磁场的二维方形晶格模型。Hafezi M等人通过二维静态谐振硅波导环构造光子等效磁场的方案,实现了Harper-Hofstadter模型。该结构有一个特点是光子从一个谐振器跳到另一个谐振器的路径长度与反方向跳跃的路径长度不同,这种路径差有效的引入了非零的相位。除非这个非零的相位是一个2Π的整数倍或者半整数倍,否则Harper-Hofstadter模型的时间反演对称性会被打破。而在Hafezi M等人文章中,在时间反演对称性没有被打破的同时,Si的静态谐振器微环支持两个简并的模式,分别是顺时针传输以及逆时针传输的谐振模式[11, 32]。可以把这两个模式理解成光学体系中的赝自旋,其中顺时针谐振模式理解成自旋向上,遵循磁场强度为B的Harper-Hofstadter模型,逆时针谐振模式理解成自旋向下,遵循磁场强度为-B的Harper-Hofstadter模型。整个系统保持了时间反演对称性,系统整体的哈密顿量如下:

      这个系统类似于电子系统中的保持时间反演对称的量子自旋霍尔哈密顿量[70-72]

      图4(c)为构造Harper-Hofstadter模型的环形谐振器波导结构[68]图4(d)为激光模式对于拓扑列阵中的缺陷具有鲁棒性[68]。Bandres M等人使用由InGaAsP制作的环形谐振器波导构造了B=2Π/4的Harper-Hofstadter模型[68],其中InGaAsP是带着光学增益的,见图4(c)。该团队通过在结构边缘增加增益,得到拓扑边缘态的激光。通过对拓扑Harper-Hofstadter模型和一个简单的正方晶格的激光比较可知,拓扑激光器具有单模、鲁棒等优越性。其中,简单的正方晶格是拓扑平庸的,对于拓扑非平庸情况下,所发出的激光光谱上仅仅只有一个峰,然而拓扑平庸的情况下的激光光谱的峰很宽,同时拓扑激光器对结构的无序具有鲁棒性,见图4(d)

    • 随着新型高阶拓扑绝缘体的提出[30, 73-84],零维拓扑角态的激光器也被广泛研究。在高阶拓扑绝缘体中,存在着更低维的拓扑态,例如在二维体系中,二阶拓扑绝缘体支持二维体态以及一维拓扑边缘态和零维拓扑角态[85-90]。零维的拓扑角态为实现高阶拓扑纳米激光器提供了一个很好的平台。

      Hua Zhong等人基于一种新的平台实现了拓扑角态激光器[91],这个平台是波导阵列(与之前传统的微环阵列不同),他们得到了非常稳定的角态激光,以及在高阶拓扑绝缘体的边缘态激光的双稳定。证实了角态激光是如何从随机噪音中产生的,以及激光的稳定性不受结构中的无序的影响。在结构中,虽然所支持的角态是被强局域的,但是依旧可以穿过邻近的波导管,可以通过调节波导管之间的距离来增强物质相互作用以及设计非线性器件。

      许秀来课题组首次在实验上实现了基于角态拓扑纳米激光器[48]。其中二阶光子晶体结构是利用广义2D SSH模型设计的[92-93],这种模型可以很容易的在紧凑的无磁场的光学平台上实现。通过调节平庸和非平庸光子晶体平板之间的距离提高了微腔的Q值,由于这种光子晶体的纳米腔具有很高的Q值以及很小的模式体积,使得基于角态的拓扑激光器的阈值低至1 μW。该团队还证实了该角态是由体带的非平庸的Zak相位进行拓扑保护的,具有对体内缺陷的鲁棒性。角态的拓扑激光器的工作温度远小于基于多量子阱的激光器[94-95]。然而,由于光子晶体体积小,Q值高,激光器的阈值远远低于当前的拓扑结构,并且性能与传统的纳米激光器相媲美。相比于基于一维拓扑边界态的拓扑激光,拓扑角态激光器结合了拓扑的鲁棒性和纳米激光器的小尺寸、低阈值和高功率的优点。

      该团队利用二维广义的SSH模型设计一种拓扑光子晶体纳米腔,如图5(a)所示。该纳米腔由两种类型的拓扑结构组成,这两类的拓扑结构具有相同的晶格常数a,以及不同的原胞。它们具有相同的能带结构,但是在高对称点的拓扑性质是不同的。图5(a)中蓝色区域的光子晶体是拓扑非平庸的;红色区域的光子晶体是拓扑平庸的。根据体-边-角对应关系得知,在带有非零边界极化的两个边界界面可以在带隙中诱导出一个局域角态。为了提高激光性能,采取的方法是通过调节光子晶体平板的平庸和非平庸部分之间的间隔距离(g)来提高腔的品质因子Q,如图5(c)所示,当g=60 nm时,纳米腔的Q值大约可达到50 000,并且模式体积为0.61(λ/n)3,这个非常接近传统的纳米腔[96-97]。当在角处附近引入扰动、缺陷时、微腔的品质因子和模式体积会受到影响,但角态由于拓扑保护依旧存在。该团队还在实验上验证了角态的拓扑保护,通过在结构中引入量化的微扰发现引入不同微扰的角态波动与没有引入微扰的波动相当。图5(d)显示的是对数坐标下,角态的强度随着泵浦光的功率增强而呈现缓和的“s”形状,且自发辐射耦合因子β高达0.25,图5(d)中的插图为在线性坐标下,可以看到随着泵浦光的功率不断增强,角态强度先是缓慢增强,当泵浦光的功率增加到阈值1 μW时,它的强度开始迅速增强。并且,随着泵浦光的功率增强,角态的线宽明显变窄,如图5(e)所示。这个拓扑角态激光器的阈值比目前已知的拓扑边缘激光器的阈值要低2~3个数量级。

      Figure 5.  2D topological photonic crystal cavity

    • 笔者在文中回顾了近年来拓扑激光器的发展历程,总结了不同的拓扑光子结构中的光子模式与半导体增益的结合,来实现不同类型的拓扑激光器,这些拓扑激光器为新型拓扑激光器的发展指明了道路,如不受限制在一定的工作环境,不受加工精度的影响,不受背散射影响的单向激光器,或者电子自旋可控激光器。笔者还讨论了已经在实验上实现的不同拓扑激光器的原理和应用,如一维微米尺度的激光器、一维纳米尺度的激光器、二维拓扑边缘态激光器以及二维拓扑角态激光器。这些拓扑激光器都是具有拓扑保护的,即鲁棒性。相比于传统的半导体激光器,拓扑激光器对于缺陷、微扰是具有免疫性。然而拓扑激光器已经被研究了很多年,理论和实验方法仍需要进一步的提高。首先,目前实现拓扑激光器大多采用的是光泵浦的方法,光泵浦不方便人为控制,这限制了拓扑激光器的发展,在未来发展中,实现电泵浦来控制拓扑激光器是未来研究拓扑激光器的趋势;其次,由于现有的加工工艺的限制,限制了拓扑激光器的输出功率,需要提高加工精度来实现稳定、高效、无阈值的拓扑激光器;最后,拓扑激光器与其他拓扑光学元器件的结合也是一个很重要的研究方向,为实现紧凑的光学集成打下基础。

Reference (97)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return