Volume 51 Issue 8
Aug.  2022
Turn off MathJax
Article Contents

Chen Suqi, Shan Yong, Zhang Jingzhou, Yang Zongyao. Effect of baffle configuration on aerodynamic and infrared radiation characteristics of helicopter infrared suppressor[J]. Infrared and Laser Engineering, 2022, 51(8): 20210659. doi: 10.3788/IRLA20210659
Citation: Chen Suqi, Shan Yong, Zhang Jingzhou, Yang Zongyao. Effect of baffle configuration on aerodynamic and infrared radiation characteristics of helicopter infrared suppressor[J]. Infrared and Laser Engineering, 2022, 51(8): 20210659. doi: 10.3788/IRLA20210659

Effect of baffle configuration on aerodynamic and infrared radiation characteristics of helicopter infrared suppressor

doi: 10.3788/IRLA20210659
Funds:  Key National Science and Technology Projects(J2019-III-0009-0053)
  • Received Date: 2021-09-14
  • Rev Recd Date: 2021-09-30
  • Available Online: 2022-08-31
  • Publish Date: 2022-08-31
  • In this paper, a baffle with an ejector structure is designed to block the high-temperature parts in the infrared suppressor. At the same time, the baffle structure injects ambient cold air to cool its own surface to significantly reduce the infrared radiation of the infrared suppressor. The effects of bow-shaped baffle configuration on the aerodynamic performance, temperature field, and spatial distribution of infrared radiation intensity of the infrared suppressor are studied by numerical simulation. The results show that compared with the nonbaffle structure (Case 0), the baffle structure increases the pumping coefficient of the two-dimensional ejector nozzle by 115% and the thermal mixing efficiency of the infrared suppressor by 273%. Nevertheless, the total pressure recovery coefficient of the infrared suppressor decreases by 7%, and the peak values of the wall and gas infrared radiation intensity are reduced by 46% and 72% within the 3-5 μm band, respectively. Compared with the single bow-shaped baffle (Case 1) structure, the better-designed double bow-shaped baffle (Case 3) can eject ambient cold air with a pumping coefficient of approximately 0.1 and reduce the average surface temperature of its cold side from 638 K to 415 K. The peak values of the wall and gas radiation intensity decrease by 84% and 80% within the 3-5 μm band. In general, the surface temperature of the bow-shaped baffle cold side is affected by the internal eject flow of the double bow-shaped baffle, the stagnation vortex downstream of the bow-shaped baffle cold side, and the cold backflow at the narrow edge end face of the two-dimensional mixing duct.
  • [1] Sonawane H R, Mahulikar S P. Tactical air warfare: Generic model for aircraft susceptibility to infrared guided missiles [J]. Aerospace Science & Technology, 2011, 15(4): 249-260.
    [2] Rao G A, Mahulikar S P. New criterion for aircraft susceptibility to infrared guided missiles [J]. Aerospace Science & Technology, 2005, 9(8): 701-712.
    [3] Song Xinbo, Lv Xueyan, Zhang Jianjun. Research on aircraft infrared stealth technology [J]. Laser and Infrared, 2012, 42(1): 3-7. (in Chinese)
    [4] Sheng Zhiqiang, Huang Peilin, Ji Jinzu, et al. Effects of modification on jet mixing of sword alternating lobed nozzle [J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(10): 1417-1423. (in Chinese)
    [5] Rogalski A. Competitive technologies of third generation infrared photon detectors [J]. Opto-Electronics Review, 2006, 14(1): 84-98.
    [6] Chen Geng, Shan Yong, Tan Xiaoming, et al. Effects of mixing duct geometric parameters on flow dynamics and infrared radiation characteristics for IR suppressor [J]. Infrared and Laser Engineering, 2015, 44(12): 3597-3603. (in Chinese)
    [7] Mohammadaliha N, Afshin H, Farahanieh B. Numerical investigation of nozzle geometry effect on turbulent 3-D water offset jet flows [J]. Journal of Applied Fluid Mechanics, 2016, 9(4): 2083-2095.
    [8] Nidhi Baranwal, Mahulikar S P. Review of infrared signature suppression systems using optical blocking method [J]. Defence Technology, 2019, 15(3): 194-201.
    [9] Paterson J. Overview of low observable technology and its effects on combat aircraft survivability [J]. Journal of Aircraft, 1999, 36(2): 380-388.
    [10] Paterson J. Measuring low observable technology's effects on combat aircraft survivability [C]//World Aviation Congress. 2013.
    [11] Baranwal N, Mahulikar S P. Infrared signature of aircraft engine with choked converging nozzle [J]. Journal of Thermophysics and Heat Transfer, 2016, 30(4): 1-9.
    [12] Sully P R, VanDam D, Bird J. Development of a tactical helicopter infrared signature suppression (IRSS) system [J]. Advances in Rotorcraft Technology, 1996, 12: 1.
    [13] Shan Yong, Zhang Jingzhou. Experimental on aerodynamic and infrared radiation characteristics of lobed nozzle/film cooling mixing duct [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 309-314. (in Chinese)
    [14] Wang Hao, Ji Honghu, Sang Xueyi, et al. Effect of fully shielded guiding strut on infrared signatures of exhaust system [J]. Journal of Aerospace Power, 2020, 35(10): 2078-2088. (in Chinese)
    [15] Jiang K H, Zhang J Z, Shan Y, et al. Effects of sheltering and outlet shaping on surface-temperature and infrared radiation of rear airframe with an integrating IR suppressor [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 152-162. (in Chinese)
    [16] Yi K J, Baek S W, Kim M Y, et al. The effects of heat shielding in jet engine exhaust systems on aircraft survivability [J]. Numerical Heat Transfer, 2014, 66(1): 89-106. doi:  10.1080/10407782.2013.869441
    [17] Pan C X, Yong S, Zhang J Z. Parametric effects on internal aerodynamics of lobed mixer-ejector with curved mixing duct [J]. Journal of Engineering for Gas Turbines & Power, 2014, 136(6): 061504.
    [18] Ren Lifeng, Zhang Jingzhou, Wang Xianwei, et al. Analysis of stealth properties on IR radiation suppressor embed inside helicopter rear airframe [J]. Infrared and Laser Engineering, 2011, 40(11): 2091-2097. (in Chinese)
    [19] Zheng Zhen, Zhang Jingzhou. Numerical study on effects of guide baffles on pumping performance of curved mixing duct with a large-aspect-ratio outlet [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(4): 540-547. (in Chinese)
    [20] Chen Geng, Tan Xiaoming, Shan Yong, et al. Impacts of two-dimensional curved mixing duct exit geometric parameters on flow dynamics and infrared radiation characteristics for IR suppressor [J]. Infrared and Laser Engineering, 2015, 44(6): 1704-1711. (in Chinese)
    [21] Pan C X, Zhang J Z, Shan Y. Effects of exhaust temperature on helicopter infrared signature [J]. Applied Thermal Engineering, 2013, 51: 529-538. doi:  10.1016/j.applthermaleng.2012.09.016
    [22] Pan C, Zhang J, Shan Y. Modeling and analysis of helicopter thermal and infrared radiation [J]. Chinese Journal of Aeronautics, 2011, 24(5): 558-567. doi:  10.1016/S1000-9361(11)60065-4
    [23] Wang Ding, Ji Honghu, Lu Haohao. Influence of lobed mixer on infrared character of serpentine 2-D exhaust system [J]. Infrared and Laser Engineering, 2017, 46(2): 0204004. (in Chinese)
    [24] Yang Z Y, Zhang J Z, Shan Y. Effects of slot-inlet arrangement at IR-suppressor-integrated rear air-frame on flow organization and infrared radiation characteristics [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 135-147. (in Chinese)
    [25] Chen Maozhang. Fundamentals of Viscous Fluid Dynamics [M]. Beijing: Higher Education Press, 2002: 418-424. (in Chinese)
    [26] Zhou Xiaoming. Aerodynamic and infrared radiation characteristics of low observable double S-shaped nozzles [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [27] Liu Youhong, Xie Yi. Analytical solution of mixing efficiency of lobed mixer [J]. Journal of Aerospace Power, 2009, 24(4): 740-745. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)  / Tables(5)

Article Metrics

Article views(252) PDF downloads(32) Cited by()

Related
Proportional views

Effect of baffle configuration on aerodynamic and infrared radiation characteristics of helicopter infrared suppressor

doi: 10.3788/IRLA20210659
  • Key Laboratory of Thermal Management and Energy Utilization of Aircraft, Ministry of Industry and Information Technology, College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Fund Project:  Key National Science and Technology Projects(J2019-III-0009-0053)

Abstract: In this paper, a baffle with an ejector structure is designed to block the high-temperature parts in the infrared suppressor. At the same time, the baffle structure injects ambient cold air to cool its own surface to significantly reduce the infrared radiation of the infrared suppressor. The effects of bow-shaped baffle configuration on the aerodynamic performance, temperature field, and spatial distribution of infrared radiation intensity of the infrared suppressor are studied by numerical simulation. The results show that compared with the nonbaffle structure (Case 0), the baffle structure increases the pumping coefficient of the two-dimensional ejector nozzle by 115% and the thermal mixing efficiency of the infrared suppressor by 273%. Nevertheless, the total pressure recovery coefficient of the infrared suppressor decreases by 7%, and the peak values of the wall and gas infrared radiation intensity are reduced by 46% and 72% within the 3-5 μm band, respectively. Compared with the single bow-shaped baffle (Case 1) structure, the better-designed double bow-shaped baffle (Case 3) can eject ambient cold air with a pumping coefficient of approximately 0.1 and reduce the average surface temperature of its cold side from 638 K to 415 K. The peak values of the wall and gas radiation intensity decrease by 84% and 80% within the 3-5 μm band. In general, the surface temperature of the bow-shaped baffle cold side is affected by the internal eject flow of the double bow-shaped baffle, the stagnation vortex downstream of the bow-shaped baffle cold side, and the cold backflow at the narrow edge end face of the two-dimensional mixing duct.

    • 武装直升机的红外辐射发射源主要包括直升机机身蒙皮、尾喷管、排气尾焰以及其他高温部件[1-2]。其中直升机机身蒙皮的红外辐射主要集中在8~14 μm波段,包括其自身辐射及其对背景、大气等其他辐射源的反射;尾喷管、排气尾焰及相关高温部件的红外辐射主要集中在3~5 μm 波段[3]。目前针对直升机排气系统的红外抑制方法主要有:(1) 利用主流热气动能引射环境冷气,以降低壁面和排气温度[4];(2) 将引射混合管设计为弯曲构型,以实现对腔体中高温部件的遮挡[5]。随着发动机功重比的提高,发动机排气温度有较大的提升,涡轴发动机排气系统的红外抑制器设计面临更大的挑战[6]

      遮挡措施旨在部分或完全遮挡直升机排气系统内部高温部件,进而缩减红外探测器对高温部件的探测视角,提高直升机整机的红外隐身能力[7-10]。Baranwal等[11]通过缩小节流收缩喷管出口面积遮挡内部高温部件,在较低的压力损失下,喷管红外辐射强度大幅下降。Sully等[12]对弯曲二元喷管进行研究,通过增加弯曲二元喷管的周长和截面积比例,降低了机身的红外辐射特征。单勇等[13]对波瓣喷管/气膜冷却混合管组合式红外抑制器结构形式进行了研究,该红外抑制器在混合管壁面开设多个狭缝,在混合管内壁面产生气膜,有效地冷却混合管壁面,同时利用弯曲混合管遮挡了内部高温部件,降低了直升机后方的红外辐射强度。王浩等[14]对带气膜冷却的全遮挡导流支板对排气系统红外特性的影响进行了研究,全遮挡导流支板对涡轮高温壁面进行遮挡,降低了各角域内的红外辐射强度。蒋坤宏等[15]对一体化红外抑制器遮挡对后机身表面温度和红外辐射特性的影响展开研究,结果表明遮挡结构可有效降低水平探测面以及铅锤面上方3~5 μm波段和8~14 μm波段红外辐射强度峰值。Yi等[16]对遮挡板、喷管与机匣内部的流场进行数值模拟,分析不同遮挡板长度对机身蒙皮温度与红外辐射特征的影响。

      以上研究表明,遮挡技术广泛应用于红外隐身,当遮挡物位于发动机热排气中,其技术的关键在于控制遮挡物表面的温度。在直升机排气系统中,较理想的遮挡往往与引射技术相结合,如在挡板表面设置狭缝结构与孔结构来引射环境冷气,从而降低其可视表面的温度。

      文中以一种基本的引射式红外抑制器结构为基础设计了五种弓形挡板构型,利用弓形挡板将引射式红外抑制器内部高温部件的可视面积降低到一个较小的范围内。弓形挡板用于遮挡高温部件,同时在其表面开设狭缝,利用排气主流引射外界环境冷气,降低弓形挡板表面温度。通过对比分析不同弓形挡板构型对红外抑制器内部流场、温度场与红外辐射强度的影响,探讨遮挡效果优、气动损失小的抑制器新构型。

    • 红外抑制器物理模型如图1(a)所示,包括二元引射喷管、二元混合管、分流引射器等部件。二元引射喷管和二元混合管构成引射器主体,二元引射喷管入口的宽边窄边之比为6.7∶1,涡轴发动机涡轮后排气进入二元引射喷管,利用其自身动量及其气体粘性抽吸外界环境冷气,引射冷气通过二元引射喷管入口处间距为18 mm的引射夹层进入二元混合管。如图1(b)所示,增加隔板可以阻止主流向喷管窄边两侧流动,从而消除喷管窄边出口附近的高压区,提高喷管的引射能力。

      Figure 1.  Schematic diagram of infrared suppressor

      分流引射器结构如图2所示,图2(a)为分流引射器二维结构示意图,其相对位置如图1(a)所示,二元混合管在其宽边侧沿流动方向呈现面积扩张,扩张角为α;而后是一段保持面积不变的直段,长度为S;在二元混合管出口处,宽边长度不变,窄边长度为L。分流引射器位于二元混合管扩张段,沿二元混合管宽边向两端延伸,与二元混合管窄边端面齐平,且两端直通大气。分流引射器包括两个对称的翼形挡板和一个弓形挡板,弓形挡板包括内外两层壁面,其中直接正对高温来流的内侧壁面称为热端,另一外侧壁面称为冷端。

      Figure 2.  Schematic diagram of separate flow ejector

      高温排气和引射气流左右对称通过分流引射器,部分热气和引射气流流过翼形挡板和二元混合管扩张段之间的通道;另一部分高温排气流过翼形挡板和弓形挡板之间的通道,在加速流动过程中形成混合管内部和外界环境的压差,将外界环境冷气引射到分流引射器内部,并从其侧面的狭缝流入混合管内部,在降低分流引射器表面温度的同时,可以降低热排气温度。如图2(c)所示,从抑制器的尾向观察,弓形挡板冷端将二元引射喷管入口及其内腔全部遮挡。分流引射器结构参数示意图如图3所示,分流引射器与二元混合管的具体尺寸如表1所示。

      Figure 3.  Schematic diagram of separate flow ejector structural parameters

      ComponentDescriptionValue
      L Outlet width of mixing duct/mm 250
      S The straight section of the mixing duct/mm 150
      α Expansion angle of mixing duct/(°) 30
      d1 Wing-shaped baffle width/mm 26
      d2 Wing-shaped baffle length/mm 74
      h Bow-shaped baffle hot side width/mm 92
      β Expansion angle of bow-shaped baffle hot side/(°) 88

      Table 1.  Structural parameters of two-dimensional mixing duct and the separate flow ejector

      以无任何挡板结构的红外抑制器作为基准模型(Case 0),如图4(a)所示。图4(b)所示的遮挡结构为单层弓形挡板,无引射夹层(Case 1)。如图4(c)所示,弓形挡板有两层,其冷端尾缘与翼形挡板内侧宽度相同(Case 2),图中虚线与抑制器轴线平行;弓形挡板冷端宽度h1小于弓形挡板热端宽度h。如图4(d)所示,增加弓形挡板冷端宽度h2,使其等于弓形挡板热端宽度h(Case 3)。如图4(e)所示,继续增加弓形挡板冷端宽度,使其尾缘与翼形挡板尾缘在同一直线上,这时的弓形挡板冷端宽度h3大于弓形挡板热端宽度h(Case 4)。如图4(f)所示,基于图4(e)结构,将弓形挡板冷端的尾缘向下游延伸,使弓形挡板热端尾缘的切线与冷端尾缘的切线重合,但是弓形挡板冷端宽度h3不变(Case 5)。

      Figure 4.  Schematic diagram of the bow-shaped baffle configurations

    • 假定排气进口参数均匀,二元引射喷管入口定义为流量进口,质量流量2.6 kg/s,总温760 K。为了模拟分流引射器从外界引射环境气体,且保证混合管排气充分发展,如图5所示,在抑制器外围构建了足够大的外部环境区域,将外场边界设置为压力出口,环境压力为101325 Pa,环境温度为300 K。二元引射喷管的引射气流入口定义为压力进口边界,其总压为环境大气压力101325 Pa,温度为环境温度300 K。分流引射器的引射入口设置为内部面,外界环境的空气可以自由进入。假设发动机排气是完全燃烧的燃气,其中氮气、二氧化碳和水蒸气的质量占比分别为0.706、0.209、0.085;引射气流组成为氮气和氧气,质量占比分别为0.756和0.244[17]。抑制器内部固体壁面均设置为无滑移的流固耦合面,且内部固体面发射率设置为0.8,采用灰气体加权和模型(Weighted-Sum-of-Gray-Gases-Model)确定气体吸收系数。考虑到整体红外抑制器沿XZ平面呈上下对称结构,如图5所示,为减少计算量,仅考虑1/2整体模型,黄色对称截面边界条件设置为symmetry。

      Figure 5.  Schematic diagram of the computational domain

      采用ICEM-CFD软件划分网格。由于红外抑制器整体结构较为复杂,且外部流场尺寸较大,综合考虑计算效率与精度,采用结构化网格和非结构化网格混合的方法。外流域网格采用结构化网格,红外抑制器模型采用非结构化网格,对分流引射器、二元混合管等复杂壁面和排气喷流区域采用局部网格加密[18]。如表2所示,经网格独立性试验,最终确定总体网格数约为820万。

      Grid number (million)Pumping coefficient
      1.860.26
      5.870.25
      8.200.24
      10.340.24

      Table 2.  Computed results of two-dimensional ejector nozzle pumping coefficient under different grid numbers

      参考大量红外抑制器的数值计算文献[19-21],选用SST kω湍流模型进行数值模拟;加入组分输运方程获得主流与次流掺混后的组分分布。流动传热与组分输运方程中对流项和扩散项采用二阶迎风差分格式离散,压力与速度耦合采用SIMPLEC算法。采用离散坐标辐射模型(DO模型)求解辐射换热。在流场和温度场计算的基础上,采用逆向蒙特卡洛法计算红外辐射特性[22]。文中主要计算和分析3~5 μm波段的红外辐射特性。红外辐射特性计算时探测点分布如图6所示,考虑到红外抑制器结构对称性,水平探测面和铅锤探测平面0°~90°范围内分别布置19个探测点[23],探测距离设为400 m,忽略大气对红外辐射强度的影响,因而计算值反映了目标自身的红外辐射特性。

      Figure 6.  Schematic diagram of detection position distribution

    • 引射系数Φ是衡量红外抑制器引射环境冷气能力的重要指标,定义如下[24]

      式中:msi为各功能单元或部件的引射次流流量;mp为主流流量。文中引射系数按功能单元或部件可分为二元引射喷管引射系数、翼形挡板引射系数和弓形挡板引射系数。

      表3为不同弓形挡板构型的二元引射喷管、翼形挡板和弓形挡板引射系数。可以看出:无挡板结构(Case 0)的二元引射喷管引射系数相对其他结构较低,大部分主流的动量未曾利用、引射通道窄等因素造成其引射能力差。而增加翼形挡板和无引射夹层弓形挡板后(Case 1),排气流通面积减小,在相同排气流量下的排气速度提高,主流动量利用程度提高,因而二元引射喷管的引射系数相对大幅度提高。同时,流过翼形挡板的高速排气流也引射外界环境冷气进入抑制器。当弓形挡板改为引射夹层结构后,在弓形挡板冷端宽度不超过弓形挡板热端宽度(Case 2、Case 3)时,改变弓形挡板冷端宽度,引射系数基本不变。当弓形挡板冷端宽度超过弓形挡板热端宽度(Case 4)时,二元引射喷管引射系数相较Case 3迅速下降,降幅为37%,翼形挡板引射系数降幅为28%,由此表明弓形挡板冷端加宽后阻碍了主流和次流的流动,甚至造成弓形挡板内部产生的压力高于环境压力,导致主流从弓形挡板内部流出,表现为引射系数等于负值。基于Case 4进行修型,Case 5二元引射喷管引射系数相较Case 4二元喷管引射系数虽然提升了86%,但Case 5各部件引射系数相较Case 3还是有不同程度的下降。以上数据说明弓形挡板一方面可以提高主流排气流速,增加排气动量(流量保持恒定),有利于提升抑制器的引射能力;另一方面,弓形挡板的几何外形会造成流动方向上对排气流的阻碍(如Case 4和Case 5),进而降低引射能力。

      Components pumping
      coefficient
      Two-dimensional ejector nozzleWing-shaped baffleBow-shaped baffle
      Case 00.13--
      Case 10.560.068-
      Case 20.600.0660.091
      Case 30.600.0670.11
      Case 40.280.048−0.0087
      Case 50.520.0590.030

      Table 3.  Pumping coefficient of components

      图7为不同弓形挡板构型的压力云图与流线图。如图7(b)、图7(c)所示,当弓形挡板冷端宽度不超过弓形挡板热端宽度(Case 2、Case 3)时,宽度较小的弓形挡板冷端(Case 2)虽然可以引射环境气体到弓形挡板内部,但该引射冷气难以流出弓形挡板内部与主流进行掺混。如图7(d)所示,当弓形挡板冷端宽度超过弓形挡板热端宽度(Case 4)时,主流冲击到弓形挡板冷端,随后被迫改变流向直接冲击到二元混合管壁面,在二元混合管壁与弓形挡板冷端附近形成局部高压区,使二元引射喷管引射系数与弓形挡板引射系数大幅下降。二元混合管扩张段附近和弓形挡板内腔中形成了涡结构。如图7(e)所示,基于Case 4进行修型后(Case 5),二元混合管扩张段附近的涡结构消失,二元混合管壁的局部高压区消失,虽然弓形挡板冷端壁面附近仍有局部高压区,但其数值相对Case 4数值明显下降,因此Case 5各部件引射系数均有上升。沿弓形挡板冷端尾缘流动的主流在到达弓形挡板尾缘附近产生了流动分离,分离后的流体在弓形挡板冷端下游形成一对稳定的滞止涡[25],涡内流体自成封闭回路,影响着弓形挡板冷端壁面温度。

      Figure 7.  Static pressure contours for different bow-shaped baffle configurations

    • 表4为二元混合管、弓形挡板冷端和二元混合管出口平均温度。可以看出:Case 3的各部件平均温度相对于Case 2略有下降。Case 4二元混合管平均温度相对Case 3增幅为39%,弓形挡板冷端平均温度增幅为46%,二元混合管出口平均温度增幅为12%,说明弓形挡板冷端加宽后主次流混合区域变窄,二元引射喷管引射系数下降,造成二元混合管温度上升;同时主流从弓形挡板内部溢出,引射系数为负值(见表3),造成弓形挡板冷端温度迅速上升。Case 5弓形挡板冷端温度相对Case 4弓形挡板冷端温度下降了12%,但相对Case 3弓形挡板冷端温度上升了29%。以上数据说明,当引射系数较高时,充足的环境冷气不仅降低了排气尾焰的温度,还大幅降低了可视壁面(二元混合管、弓形挡板冷端)的温度。

      Components temperature
      /K

      Two-dimensional mixing duct wallWing-shaped baffle cold sideTwo-dimensional mixing duct outlet
      Case 0333.21-568.28
      Case 1332.88-525.55
      Case 2327.03420.49521.89
      Case 3326.35415.90504.02
      Case 4453.72607.98564.37
      Case 5350.34535.35514.59

      Table 4.  Average temperature of components

      图8为不同弓形挡板冷端构型的尾向温度云图(图中仅显示了几何上的一半)。如图8(b)所示,无引射夹层结构的弓形挡板可视高温壁面面积较大。如图8(c)所示,弓形挡板增加引射夹层结构后,当弓形挡板冷端宽度小于弓形挡板热端宽度时,宽度较小的弓形挡板冷端会暴露一部分温度较高的弓形挡板热端,但相对无引射夹层结构的弓形挡板,尾向可视高温壁面面积大幅减小。如图8(d)所示,当弓形挡板冷端宽度等于弓形挡板热端宽度时(Case 3),从尾向观察弓形挡板冷端可以遮挡弓形挡板热端、二元引射喷管与大部分翼形挡板。如图8(e)所示,Case 4对翼形挡板、二元引射喷管等高温壁面全部遮挡,但弓形挡板冷端受主流直接冲击,弓形挡板冷端平均温度与二元混合管平均温度明显增加。如图8(f)所示,经过修型后的Case 5高温分布较Case 4有所缓解,弓形挡板冷端高温区主要集中在弓形挡板冷端中部(文中模拟采用1/2整体模型)。图9为弓形挡板内部沿着高度方向的多个纵向截面的速度云图。由图9(a)、(b)可知,环境冷气高速区域主要位于弓形挡板引射入口附近,随着弓形挡板内部越远离弓形挡板引射入口,环境冷气流速越慢,对弓形挡板冷端冷却效果越差。如图9(c)所示,当弓形挡板冷端宽度超过弓形挡板热端宽度时,主流直接冲击到弓形挡板冷端,主流流入弓形挡板内部使得弓形挡板冷端温度较高,此时腔体内速度分布较为复杂。如图9(d)所示,经过修型后,内部截面的速度分布更加均匀,但弓形挡板引射气流无法以较高的速度流入弓形挡板引射内腔,对弓形挡板冷端壁面的冷却效果较差。

      Figure 8.  Static temperature contours for different bow-shaped baffle configurations observed from the tail

      Figure 9.  Velocity contours of double bow-shaped baffle inside

      为研究弓形挡板冷端下游区域对弓形挡板冷端壁面温度影响机理,沿整体模型YZ方向截取平面如图10所示。图11(a)~(c)分别为Case 3、Case 4和Case 5的带温度着色的速度矢量分布图。可以得到,主流在二元混合管后方汇聚(黑线处),一部分主流在弓形挡板冷端后方产生卷吸作用,对弓形挡板冷端温度产生不利影响(卷吸区温度相对环境温度高)。由于两股主流在混合管出口后方汇聚,由图7所示的压力云图可知,滞止涡的压力值(level 8)小于环境压力值,压差的存在使得混合管窄边出口附近的环境冷气流入混合管内部(如图11所示),有利于弓形挡板冷端冷却。如图7压力云图与图11(a)~(c)温度云图所示,随着弓形挡板冷端宽度的增加,主流汇聚线往排气方向移动,弓形挡板冷端下游的滞止涡低压区面积增加,因此更多的环境冷气流入混合管内,更有利于弓形挡板冷端壁面的冷却。如图11(a)与图8(d)所示,当弓形挡板冷端宽度等于弓形挡板热端宽度时,尽管从混合管窄边出口附近流入弓形挡板冷端下游区域的环境冷气较少,但双层弓形挡板内部的冷气对弓形挡板冷端壁面有较好的冷却效果。如图11(b)与图8(e)所示,当弓形挡板冷端宽度大于弓形挡板热端宽度时,从混合管窄边出口附近流入弓形挡板冷端下游区域的环境冷气较多,对弓形挡板冷端的冷却较为明显,但主流流入双层弓形挡板内部,并从弓形挡板引射入口溢出,导致弓形挡板冷端温度较高。如图11(c)与图8(f)所示,经过修型后,弓形挡板内部引射了较少的环境冷气,弓形挡板冷端温度下降。

      Figure 10.  Schematic diagram of section

      Figure 11.  Velocity vector diagram with temperature coloring at the downstream of bow-shaped baffle cold side

    • 弓形挡板位于二元混合管中,势必造成排气的流动损失,从而直接影响发动机的性能,因此引入总压恢复系数对此进行评价。总压恢复系数[26]定义为:

      式中:$ {m_{out}} $$ {m_p} $$ {m_{s1}} $$ {m_{s2}} $$ {m_{s3}} $分别为二元混合管出口、主流、二元引射喷管引射次流、翼形挡板引射次流和弓形挡板引射次流流量;$ {P_{out}} $$ {P_{s1}} $$ {P_{s2}} $$ {P_{s3}} $分别为二元混合管出口、二元引射喷管引射入口、翼形挡板引射入口和弓形挡板引射入口质量平均总压值。

      热混合效率是衡量主次流流动掺混性能的重要指标,表示主流和引射气流的混合均匀程度。热混合效率η[27]定义为:

      式中:$ {T_p} $$ {T_s} $分别为主流、引射次流温度;$ {m_p} $为主流流量;$ {T_{mix}} $为主流与次流完全混合时的平均温度,定义为:

      表5可知,Case 2、Case 3总压恢复系数相对较高。当弓形挡板冷端宽度超过弓形挡板热端宽度(Case 4)时,主流直接冲击到弓形挡板冷端,压力损失较大,总压恢复系数下降。经过修型后(Case 5),总压恢复系数提高。在文中研究构型范围内,Case 3的热混合效率最高,Case 4的热混合效率最低。宽度较大的弓形挡板(Case 4),引射次流流量较小,冷热流体掺混不均,热混合效率因此下降。相对无挡板结构,增加挡板后热混合效率最大增幅为273%。

      Coefficient


      Total pressure recovery coefficientThermal mixing efficiency
      Case 00.9940.224
      Case 10.9150.755
      Case 20.9200.825
      Case 30.9230.837
      Case 40.8720.653
      Case 50.9100.758

      Table 5.  Mixing characteristic coefficients for different bow-shaped baffle configurations

    • 以无挡板结构(Case 0)的固体壁面和气体红外辐射强度峰值分别作为基准,将红外抑制器红外辐射强度无量纲化,定义固体壁面和气体红外辐射强度的相对比(Ir)。

      图12展示了铅锤探测面与水平探测面上不同弓形挡板冷端构型在3~5 μm波段的固体壁面红外辐射强度分布(探测位置分布如图6所示)。由图12(a)可知,在铅锤探测面上相较无挡板结构,增加挡板结构后壁面辐射强度至少降低45%。不同挡板结构的红外抑制器在其尾向辐射最强,并且在0°~15°范围内都可探测到抑制器内部的高温壁面辐射,随着探测角度增加,温度较低的混合管壁面遮挡了内部高温壁面,壁面辐射强度降低。如上文所述,Case 4构型的弓形挡板几乎没有引射能力,其壁面温度高。在0°~10°范围内,Case 4构型的红外抑制器壁面辐射强度略低于Case 1构型的红外抑制器;而在20°~90°范围内,无引射能力的弓形挡板(Case 4)壁面辐射反而比单层弓形挡板(Case1)壁面辐射高,这是因为Case 4二元混合管侧壁温度较高(如表4图8所示),大幅增加了20°~90°范围内的壁面辐射。当弓形挡板具备引射能力后(Case 2、Case 3和Case 5),弓形挡板在对抑制器内部遮挡的同时能够保证其自身温度较低,所以大幅度降低了抑制器尾向的壁面辐射强度。例如,Case 3构型的红外辐射降低了至少85%。Case 2与Case 3红外辐射峰值集中在0°~20°,因为这个范围内可以探测到部分温度较高的弓形挡板热端;Case 2弓形挡板冷端宽度较小,温度较高的弓形挡板热端可视面积增大,因此其0°~20°壁面辐射强度峰值相较Case 3增加了76%。当增加弓形挡板冷端宽度后(Case 5),虽然相较Case 3遮挡了温度较高的翼形挡板,但因其引射系数相对Case 3较低,使弓形挡板冷端表面温度较高,壁面辐射强度峰值相对Case 3增加了116%。

      Figure 12.  Wall radiation intensity of 3-5 μm band

      图12(b)所示,在水平探测面上相较无挡板结构,增加挡板后壁面辐射强度至少降低50%。壁面辐射强度峰值出现在0°~10°范围内,且随着探测角度增加,温度较低的混合管使内部高温部件的可视面积逐渐减小,壁面辐射强度逐渐降低。任一双层挡板壁面辐射强度峰值均低于单层挡板结构(Case 1),并且引射系数越高,对弓形挡板冷端冷却效果越好,所对应的壁面辐射强度越低。

      图13展示了铅锤探测面与水平探测面上不同弓形挡板冷端构型在3~5 μm波段的气体红外辐射强度分布。可以得到,无论铅锤还是水平探测面,原本壁面辐射较高的0°尾向视角气体辐射较低,随着探测角增加,气体辐射增加。如图13所示,在0°~90°范围内,相较无挡板结构,增加挡板后气体辐射强度至少降低70%。这是因为无挡板结构(Case 0)对主流核心区降温能力较弱,热混合效率较低,增加挡板后强化了主次流掺混,对主流降温效果较好(如表5所示)。有引射能力的弓形挡板(Case 2、Case 3、Case 5)在0°~60°范围内气体辐射均低于没有引射能力的弓形挡板(Case 1、Case 4),且引射系数越高,热混合效率越高,所对应的气体辐射越低。

      Figure 13.  Gas radiation intensity of 3-5 μm band

    • 通过数值模拟,将遮挡与引射相结合,分析不同弓形挡板构型对红外抑制器气动性能、温度场与红外辐射特征的影响规律,得到以下结论:

      (1) 相对无挡板结构(Case0),增加挡板后排气主流动量利用程度提高,二元引射喷管的引射系数至少增加115%。与单层弓形挡板(Case 1)相比,设计较优的双层弓形挡板(Case 3)能够进一步提升二元引射喷管和弓形挡板自身的引射能力。

      (2) 单层挡板因其自身处于高温排气主流中,最高温度达到713 K,平均温度为638 K。双层弓形挡板(Case 3)冷端温度相对单层弓形挡板降低了35%,高温壁面面积大幅减小。双层弓形挡板冷端表面温度受弓形挡板内部引射气流、冷端下游滞止涡和二元混合管窄边出口附近的回流冷气三者共同影响。

      (3) 相对无挡板结构(Case 0),设计较优的双层弓形挡板(Case 3)使红外抑制器的热混合效率上升了273%,但因其结构复杂造成抑制器总压恢复系数下降7%。

      (4) 对于红外抑制器尾向壁面辐射,相对无挡板结构,单层弓形挡板结构下的抑制器3~5 μm波段壁面辐射强度峰值降低46%,气体辐射强度峰值降低72%;设计较优的双层弓形挡板(Case 3)结构下的抑制器3~5 μm波段壁面辐射强度峰值降低84%,气体辐射强度峰值降低80%。

Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return