Volume 51 Issue 9
Sep.  2022
Turn off MathJax
Article Contents

Jiang Xingchen, Cheng Dehua, Li Yeqiu, Cui Jianfeng, Dai Qin. Research on mid-infrared laser at 35 kHz based on optical parametric oscillator[J]. Infrared and Laser Engineering, 2022, 51(9): 20210817. doi: 10.3788/IRLA20210817
Citation: Jiang Xingchen, Cheng Dehua, Li Yeqiu, Cui Jianfeng, Dai Qin. Research on mid-infrared laser at 35 kHz based on optical parametric oscillator[J]. Infrared and Laser Engineering, 2022, 51(9): 20210817. doi: 10.3788/IRLA20210817

Research on mid-infrared laser at 35 kHz based on optical parametric oscillator

doi: 10.3788/IRLA20210817
Funds:  National Natural Science Foundation of China (61705145);Support Plan for Innovative Talents in Colleges and Universities of Liaoning Province(LR2016079);Natural Science Foundation of Liaoning Province(20180550330);Research and Innovation Team Construction Project of Shenyang Institute of Technology(SYLUTD2020);High-level Achievement Construction Plan of Shenyang Polytechnic University
  • Received Date: 2021-11-03
  • Rev Recd Date: 2021-11-10
  • Accepted Date: 2021-12-06
  • Publish Date: 2022-09-28
  • A 3.8 μm periodically poled LiNbO3 optical parametric oscillator based on high repetition frequency pumping is studied. The Nd:YVO4 acousto-optic Q-switched laser is used, obtaining a fundamental 1064 nm laser with good beam quality, the repetition frequency at 25-35 kHz, the maximum average power of 6.1 W and the pulse width of 59.1 ns. The temperature tuning characteristic of MgO:PPLN crystal with the period Λ=29.5 μm under the 1064 nm laser pumping is simulated. Through experiments, the 3599.6-3845.5 nmmid-infrared laser is obtained at a temperature of 25-200 ℃. When the temperature of the PPLN crystal is 30 ℃and the pump power is 6.1 W, the mid-infrared laser is obtained with the maximum output power of 0.45 W and the repetition frequency of 35 kHz at 3845.5 nm.
  • [1] Larson E, Hines M, Tanas M, et al. Mid-infrared absorption by soft tissue sarcoma and cell ablation utilizing a mid-infrared interband cascade laser [J]. Journal Biomedical Optics, 2021, 26(4): 043012. doi:  10.1117/1.JBO.26.4.043012
    [2] Junaid S, Tomko J, Semtsiv M P, et al. Mid-infrared upconversion based hyperspectral imaging [J]. Optics Express, 2018, 26(3): 2203-2211. doi:  10.1364/OE.26.002203
    [3] Ma Q, Fan Y, Luo Z, et al. Quantitative analysis of collagen and capillaries of 3.8-μm laser-induced cutaneous thermal injury and wound healing [J]. Lasers Medical Science, 2021, 36(7): 1469-1477. doi:  10.1007/s10103-020-03193-x
    [4] Meng X, Wang Z, Tian W, et al. High average power 200 fs mid-infrared KTP optical parametric oscillator tunable from 2.61 to 3.84 μm [J]. Applied Physics B, 2021, 127: 129. doi:  doi.org/10.1007/s00340-021-07675-w
    [5] Yun C, Zhang C, Miao X, et al. Ultra-broadband 4.1 μm mid-infrared emission of Ho3+ realized by the introduction of Tm3+ and Ce3+ [J]. Journal of Luminescence, 2021, 239: 118368. doi:  doi.org/10.1016/j.jlumin.2021.118368
    [6] Jiao Z, Huang W, Liu B, et al. InAs triangular quantum wells grown on InP/SiO2/Si heterogeneous substrate for mid-infrared emission [J]. Materials Science in Semiconductor Processing, 2021, 136: 106163. doi:  doi.org/10.1016/j.mssp.2021.106163
    [7] Zong Mengyu, Zhang Zhen, Liu Jingjing, et al. LD pumped high-power mid-infrared solid state lasers based on 1.3 at.%Er3+: CaF2 crystal (Invited) [J]. Infrared and Laser Engineering, 2021, 50(8): 20210336. (in Chinese) doi:  10.3788/IRLA20210336
    [8] Peng Yuefeng, Wang Weimin, Xie Gang, et al. 3.8 μm mid-infrared laser with 11.2 W output power [J]. Infrared and Laser Engineering, 2008, 37(S3): 82-85. (in Chinese)
    [9] Wu B, Kong J, Shen Y. High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 μm [J]. Optics Letters, 2010, 35(8): 1118. doi:  10.1364/OL.35.001118
    [10] Parsa S, Kumar S C, Nandy B, et al. Yb-fiber-pumped, high-beam-quality, idler-resonant mid-infrared picosecond optical parametric oscillator [J]. Optics Express, 2019, 27(18): 25436-25444. doi:  10.1364/OE.27.025436
    [11] Guo L, Yang Y, Zhao S, et al. Room temperature watt-level 3.87 microm MgO: PPLN optical parametric oscillator under pumping with a Tm: YAP laser [J]. Optics Express, 2020, 28(22): 32916-32924. doi:  10.1364/OE.409093
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(205) PDF downloads(38) Cited by()

Related
Proportional views

Research on mid-infrared laser at 35 kHz based on optical parametric oscillator

doi: 10.3788/IRLA20210817
  • 1. School of Science, Shenyang Ligong University, Shenyang 110159, China
  • 2. Technology Innovation Center of High Performance Laser and Application, Liaoning Province, Shenyang 110159, China
Fund Project:  National Natural Science Foundation of China (61705145);Support Plan for Innovative Talents in Colleges and Universities of Liaoning Province(LR2016079);Natural Science Foundation of Liaoning Province(20180550330);Research and Innovation Team Construction Project of Shenyang Institute of Technology(SYLUTD2020);High-level Achievement Construction Plan of Shenyang Polytechnic University

Abstract: A 3.8 μm periodically poled LiNbO3 optical parametric oscillator based on high repetition frequency pumping is studied. The Nd:YVO4 acousto-optic Q-switched laser is used, obtaining a fundamental 1064 nm laser with good beam quality, the repetition frequency at 25-35 kHz, the maximum average power of 6.1 W and the pulse width of 59.1 ns. The temperature tuning characteristic of MgO:PPLN crystal with the period Λ=29.5 μm under the 1064 nm laser pumping is simulated. Through experiments, the 3599.6-3845.5 nmmid-infrared laser is obtained at a temperature of 25-200 ℃. When the temperature of the PPLN crystal is 30 ℃and the pump power is 6.1 W, the mid-infrared laser is obtained with the maximum output power of 0.45 W and the repetition frequency of 35 kHz at 3845.5 nm.

    • 3~5 μm中红外激光位于大气透射窗口,该波段的激光在大气中衰减较小,能够实现远距离传输。同时该波段覆盖了许多重要原子、分子的振动谱线。因此中红外光在激光雷达、遥感探测、光通信、光谱分析等方面[1-3]具有重要的应用价值。中红外发光源的研究在国内外都受到了极大的重视。

      目前,产生中红外的方法主要有量子级联激光器、掺稀土固体激光器、光参量振荡器等[4-7]。其中光参量振荡器相比于其他技术,有结构紧凑、输出波长可调谐、输出效率较高等优点,具有重要的研究价值。随着周期性极化晶体和准相位匹配技术的发展,中红外光参量振荡器有了进一步的提升。彭跃峰等人利用椭圆形光斑泵浦PPLN,在8 kHz的重复频率下,获得了平均功率11.2 W,光-光转换斜效率14.5%的3.84 μm中红外输出[8]; Bo Wu等人使用半外腔结构的PPLN-OPO,获得了9.23 W的3.82 μm中红外光,实现了29.4%的斜效率[9]; S. Parsa等人报道了一种掺Yb皮秒光纤激光器泵浦的PPLN-OPO,在80 MHz的重复频率下,得到了1 W的3340 nm中红外光[10]; Lei Guo等人利用声光调Q Tm:YAP激光器泵浦PPLN-OPO,在重复频率6 kHz、脉冲宽度45 ns的情况下,得到了最大输出功率1.2 W的3.87 μm激光,对应的光-光转换效率为19.4%[11]

      论文研究了高重频PPLN-OPO中红外激光光源。实验采用端面泵浦Nd: YVO4,声光调Q激光器产生的35 kHz 1064 nm激光作为基频光,通过缩束系统压缩光斑直径,设计了Λ=29.5 μm的单周期PPLN直腔光参量振荡器,对PPLN进行温度调谐,实现了PPLN-OPO的中红外波段的连续调谐输出。

    • 激光器实验光路如图1所示。端面泵浦Nd:YVO4声光调Q激光器采用L型腔型结构,由M1、M2、M3三个平平镜构成。其中M1镀有45°808 nm高透膜和1064 nm高反膜;M2透过率为15%;M3镀有1064 nm高反膜。Nd:YVO4增益介质的掺杂浓度为0.2%,使用铟箔包裹放置在热沉中。Q开关为声光调Q器(Gooch & Housego),调频范围为0~50 kHz。808 nm泵浦源、激光晶体、声光调Q器均采用循环水冷却,温度设置为22.5 ℃。1064 nm激光经过45°反射镜M4、M5后进入光隔离器,避免反射对基频激光光路造成损坏。基频光通过缩束系统,光斑直径约为0.4 mm。

      Figure 1.  Optical path schematic of the experimental

      OPO采用直腔结构,为提高光束质量,M6、M7采用平平腔镜。M6镀有1.064 μm 高透膜,1200~1600 nm高反膜;M7镀有1.064 μm和3000~8000 nm高透膜,1250~1530 nm高反膜。PPLN晶体极化周期Λ=29.5 μm,5 mol%MgO掺杂,晶体尺寸为10 mm×1 mm×50 mm。相比于普通的PPLN晶体,MgO:PPLN具有更高的抗损伤阈值。晶体两端均镀有基频光、信号光、闲频光波段的增透膜(AR@1064 nm & 1.4~1.7 μm & 3.2~3.9 μm)。温度控制器的调谐范围为25~200 ℃,精度为±0.1 ℃。OPO腔长为60 mm。

    • 基频光的光束质量、峰值功率是影响OPO性能的重要因素。在35 kHz重复频率下,测得其最大平均输出功率为6.1 W(COHERENT, PM10 V1),利用光束质量分析仪(NS-PYRO)测量其输出光斑。基频激光输出功率曲线以及光斑轮廓如图2所示。

      Figure 2.  (a) 1 064 nm laser output power curves at different Q-switched frequencies; (b) Beam profile at 35 kHz and 6.1 W

      利用光电探测器(DET10 A/M)和示波器(TDS3034 B)测量了基频光的脉冲波形,如图3所示,当重复频率为35 kHz,激光输出功率为6.1 W时,基频激光脉冲宽度为59.1 ns。

      Figure 3.  The pulse width of fundamental laser

      在30~190 ℃连续温度变化下,使用近红外光谱仪(NIRQUEST)测量PPLN-OPO的调谐波长,图4为信号光波长光谱图,根据$1/{\lambda _i} = 1/{{\lambda} _p} - 1/{\lambda _s}$可精确推算得到对应的闲频光波长。图5为测得的信号光波长以及计算所得的闲频光波长调谐曲线。

      Figure 4.  Signal spectrum at different temperatures

      Figure 5.  Comparison of experimental results and theory curves

      对光参量振荡输出特性进行研究,分别测量了30、90、120 ℃下闲频光输出功率,如图6所示。可以看出,随着温度的升高,输出中红外光波长变短,输出功率有了一定的提高。由于闲频光波长的缩短,晶体对闲频光的吸收系数减小,导致闲频光的损耗降低,同时光参量振荡过程中的量子亏损(η=λp/λs)也降低,使得输出的中红外光能量得到了提升。

      Figure 6.  Output power curve of idler at different temperatures

      PPLN晶体温度设定为30 ℃,重复频率为35 kHz时,闲频光的输出功率曲线以及光-光转换效率曲线如图7 (a)所示。在基频激光功率为6.1 W时,得到最大输出功率为0.45 W的3.8 μm中红外光,OPO阈值为2.06 W。转换效率随着基频光能量的增加呈现出先上升再下降的趋势,在输入功率为3.2 W时,得到10%的最大光-光转换效率。主要原因是808 nm泵浦源功率增加,激光晶体内部热效应加重,造成基频光光束质量降低,从而导致光-光转换效率下降。

      Figure 7.  (a) 3.8 μm output power and conversion efficiency curves at 35 kHz; (b) Idler beam profile

      受限于探测器的波长响应范围,实验测量了OPO输入功率为6.1 W时,产生的信号光脉宽如图8所示,信号光的脉宽为10.7 ns。非线性晶体对于能量的吸收损耗和振荡产生的衍射损耗提升了振荡阈值,使得输出的参量光脉宽比基频光的脉宽要窄。

      Figure 8.  The pulse width of signal

    • 设计研究了中红外波段PPLN光参量振荡器,通过端面泵浦Nd: YVO4声光调Q激光器实现了高重频、高光束质量1064 nm基频激光。采用温度调谐PPLN-OPO的方式,获得了3599.6~3842.5 nm的高重频中红外波段激光调谐输出。当PPLN晶体温度控制在30 ℃,输入基频光功率为6.1 W,重复频率为35 kHz条件下,实现了最大输出功率为0.45 W的3842.5 nm中红外激光的稳定输出,最大转换效率为10%。

Reference (11)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return